Author: Sean M. Lyden

Sean M. Lyden has not set their biography yet

Evaluating Medium-Duty Powertrain Options for Aerial Trucks

Aerial lift trucks are built for low-mileage, high-engine-hour duty cycles, with unique payload requirements. So what should you consider in terms of the powertrain – the engine, transmission and drive axle options – to spec the best chassis for the job? Utility Fleet Professional spoke with Ryan Kloos, chassis technical coordinator for aerial platform manufacturer Terex Corp., to get his advice.

We centered the conversation around an example of a Class 7 chassis, rated up to 33,000 pounds gross vehicle weight (GVW), that might be used for a 50-foot aerial application. This is because smaller trucks typically have only a few engines, transmissions and drive axles to choose from. But when you move up to a Class 7 or heavier chassis, the specification process gets much more complex, with some models offering more than a dozen different powertrain configurations that can significantly impact the truck’s highway speed, fuel economy, performance and price.

UFP: When evaluating diesel engine horsepower and torque ratings, how do you sort through the myriad options to determine the best fit?

Kloos: The big thing is the work environment of that truck. Is it off-road? Will it operate in a mountainous area? Then there are payload and trailering requirements. You want to make sure the truck has enough power to move the weight and pull the trailer, while achieving sufficient top-end speed.

UFP: How does this translate into an actual engine spec?

Kloos: Take the 33,000-pound GVW truck example. If it’s a typical 4×2 application, a smaller 250-horsepower and 660-lb-ft torque [diesel] engine seems to cover most requirements. But when you get into applications where you may be pulling a little bit heavier trailer behind that truck or get into extreme off-road applications or a mountainous area, we’ll look at increasing horsepower and torque from there.

There’s also the cost factor. The higher up you go in engine horsepower, the higher the cost. So, we’re trying to offer as much truck as possible for as little cost as possible. And a 250-horsepower engine in a 33,000-pound GVW truck seems to hit that sweet spot in a wide range of utility applications.

UFP: What about selecting the transmission?

Kloos: The manual transmissions are obviously a lot lower cost and have their advantages as far as [low-gear] performance, but for the most part, the Allison automatic [3000 RDS series] brings a lot of simplicity in terms of driving the truck – and it’s the drivability of the automatic that operators really enjoy.

UFP: Drive-axle gear ratios often seem like an afterthought, but the wrong spec could significantly impact top speed, fuel economy and the ability to handle off-road and steep grade conditions. What should utility fleet managers consider?

Kloos: The big factor when you start talking about gearing is the top speed requirement. In a lot of cases, utility fleets are looking for off-road performance, but they also want to be able to get the truck to run at highway speeds. So it’s a matter of finding that happy medium in there between the transmission gearing and rear-end gearing. We need to configure the spec to meet the max speed, fuel economy and performance requirements.

When you consider a 33,000-pound GVW truck in a 4×2 application, you want it to handle 75 mph highway speed, while still offering good low-end startability. In this case, we typically recommend about a 6.17:1 rear gear ratio with a 250-horsepower engine and six-speed automatic transmission. If you’re pulling a trailer, you would adjust the gear ratio accordingly.

We often receive requests where the customer will say, “Our old truck we’re replacing has a 300-horsepower engine and it’s just not enough power for what we need it to do. So we want our new truck to have 350 horsepower.” But we usually try to explain that the reason the 300-horsepower truck didn’t perform right is because it was geared for a 95 mph top speed. If you don’t need that truck to do 95 mph, we can bring that down a little bit, lower your top gear speed and give you a little bit better performance without you having to spend all the money for a bigger engine.


Rear-Axle Ratio Spec Guidelines
In medium-duty trucks, gear ratios can range from 2.69:1 to 7.17:1, depending on the truck class, make and model, and rear-axle capacity. How do you determine what’s right for your application? The following general guidelines should help point you in the right direction:

• For maximum towing and payloads, and on hilly terrain with steep grades, ratios at or nearing 7.17:1 should be considered depending upon severity.
• When the truck requires flexibility for operating on varied terrain with moderate towing and payloads, ratios in between the extremes should be considered. One can bias toward either end of the spectrum based upon the frequency of off-road events.
• For flat terrain, lighter loads and running at consistent highway speeds, a ratio closer to 2.69:1 should be selected.

Introducing the All-New Utility Fleet Conference at ICUEE

Are you seeking to grow your fleet knowledge and skills to become more valuable to your employer? Looking to expand your influence with senior management to get more done for your fleet? Searching for new ideas about how to do more with less, whether it’s money, resources, time or all three?

If you answered “yes” to any of these questions, we at Utility Fleet Professional magazine have created a must-attend conference for you – the Utility Fleet Conference (UFC).

UFC is a new three-day educational event, scheduled to take place September 28-30, that drills down into best practices, strategies and trends that address the unique needs and challenges of utility fleets. Co-located with the popular International Construction and Utility Equipment Exposition in Louisville, Ky., UFC offers an exclusive forum for you to exchange ideas with peers and industry experts, so that you come away with actionable tips to apply in your own fleet and career.

The conference kicks off with a dynamic opening keynote from Ken Sheridan, director of safety and technical training for Louisville Gas and Electric and Kentucky Utilities, titled “Applying a Culture of Safety to Your Fleet Operations,” followed by a series of utility fleet-focused seminars, networking lunches and panel discussions.

Our expert presenters and panelists will go deep on a wide range of topics, including equipment specification strategies, fleet technologies and trends, fleet maintenance best practices and leadership development.

Interested in learning more?

Check out the 2015 UFC brochure that was mailed with this issue of the magazine. Then visit the conference website at, where you can find more details on the conference agenda and register to reserve your seat.

We’re excited for this privilege to build upon the value of our magazine’s content by taking utility fleet education to a more in-depth and personal level.

We look forward to seeing you and helping you grow at UFC!

Sean M. Lyden


The Rise of ePTO Systems for Utility Trucks

When it comes to electric vehicles (EV), what usually garners headlines are consumer cars, like the Toyota Prius, Nissan LEAF and the eye-catching Tesla Model S sport sedan. But the future expansion of the EV market will likely be driven by commercial fleets, including electric utility companies, which are stepping up investments in all-electric and hybrid-electric vehicles.

In November 2014, the White House and Edison Electric Institute, which represents investor-owned utilities, announced that more than 70 electric utility companies have committed at least 5 percent of their annual fleet acquisition budgets to purchasing plug-in EVs and technologies. This adds up to total investments of approximately $50 million per year, or $250 million over five years, starting in 2015.

According to the White House’s “Fact Sheet: Growing the United States Electric Vehicle Market” (, the utility companies expect to meet the 5 percent commitment by purchasing a variety of technologies, from electric passenger cars to medium- and heavy-duty work trucks with electric power take-off (ePTO) systems that power a truck’s onboard equipment – such as aerial platforms and digger derricks – without the need to run the engine.

Traditionally, the power take-off system, which is mounted to the truck’s transmission, redirects engine power to operate onboard equipment. But when you consider that engine idle burns as much as 1 gallon of fuel per hour, a bucket truck that might idle several hours per day wastes a lot of fuel and creates excessive toxic emissions.

That’s why a growing number of utility companies, like Pacific Gas and Electric Co., are expanding their fleets of hybrid-electric trucks equipped with ePTO systems to reduce fuel costs and their carbon footprint. PG&E recently unveiled its plug-in hybrid electric drivetrain Class 5 bucket truck, developed in partnership with Efficient Drivetrains Inc. (EDI) and Altec Industries. The truck features up to 40 miles of all-electric driving and ePTO capabilities that electrify all onboard equipment including the boom, eliminating the need for engine idle at job sites.

PG&E estimates that each plug-in hybrid electric vehicle will reduce emissions by up to 80 percent compared to conventional fuel vehicles and will save the utility more than 850 gallons of fuel per year.

Utility equipment manufacturers Altec Industries ( and Terex Corp. ( both offer hybrid-electric systems with ePTO capabilities for customers.

Dubbed JEMS – for Jobsite Energy Management System – Altec’s hybrid-electric system uses stored electrical energy to power the onboard boom and other equipment, provide exportable power, and generate in-cab heating and cooling, without engine idle. The system’s batteries are charged by plugging into shore power or by operating the truck’s internal combustion engine.

Terex’s hybrid-electric system, called HyPower, also features a plug-in ePTO, harnessing stored energy from rechargeable batteries to power aerial devices and onboard equipment for up to six hours before needing to be recharged. According to the company’s website, Terex estimates that the HyPower saves utility fleets up to 1,500 gallons of fuel per year, based on 7,000 miles and 1,250 job site hours per year.

As utility companies increase their investment in hybrid-electric trucks, they will provide a credible proof of concept about the capabilities of plug-in technologies, setting a compelling example to their commercial fleet customers to follow their lead.

For deeper research, check out “Transportation Electrification: Utility Fleets Leading the Charge” (, a white paper produced by Edison Electric Institute.


What’s New in Truck Bodies for Utility Fleets?

Are you looking to empower your crews to get more work done both faster and more safely? Do you want to increase each truck’s legal payload without bumping up to a larger vehicle? Some of the industry’s leading truck body manufacturers are rolling out new products and design enhancements for 2015 to help utility fleets achieve these objectives and more. Following are four new truck body offerings you can expect to see this year.


Reading 2 Web

Manufacturer: Reading Truck Body
What’s New: Aluminum Bed Insert for Pickup Trucks

Reading Truck Body has developed a lightweight aluminum bed insert, which is a self-contained, covered cargo compartment that “inserts” into the pickup bed. It enables fleet managers to increase a pickup truck’s cargo capacity and storage security, with minimal impact on the truck’s legal payload.

Since the aluminum insert is not permanently mounted onto the truck, it can be easily removed and transferred to another vehicle, allowing for extended use of the product beyond the initial vehicle’s life cycle. As of press time, the product is only available as a special order, and the company says it’s designing vocational-specific configurations, including applications for utility and telecom fleets.


Terex 2 Web

Manufacturer: Terex
What’s New: Fiberglass 4th Section for General 80 Digger Derricks

How do you extend the reach of a digger derrick while keeping crews safer when operating the truck near power lines? Consider Terex’s new insulated fiberglass 4th section option for the company’s line of General 80 digger derricks. Replacing the non-insulated steel 4th section on previous models, the fiberglass version is designed to meet the industry’s demand for increased insulated digger derrick reach heights. This way, crews can set poles and perform line work with an 80-foot digger derrick, all with greater safety and peace of mind for their employers.


Altec 2 Web

Manufacturer: Altec
What’s New: AF 1360 Steel Chip Dump Body

Altec’s AF 1360 (13 feet long; 60-inch-high sides) chip dump for tree-trimming truck applications offers utility fleets a smaller alternative to the standard 1472 (14 feet long; 72-inch-high sides). The larger the body, the greater the risk there is of overloading the truck. The AF 1360 chip dump gives fleet managers confidence that their crews can get the job done while staying within legal payload limits.

The AF 1360 also offers new safety features, such as a manual safety prop with a side lever so that maintenance staff can ensure the body is properly secured in the full-tilt position before performing any maintenance underneath the dump body. Additionally, ladders and pruners – which traditionally have been stored on the street side of the vehicle – are now mounted on the curbside of the AF 1360 body. This helps to keep crews out of harm’s way from vehicle traffic when grabbing the tools they need to do their jobs.


BrandFX 2 Web

Manufacturing: BrandFX
What’s New: 56LS All-Composite Service Body

Looking to significantly boost the legal payload of your trucks without compromising durability? That’s what BrandFX’s new lightweight 56LS all-composite 8-foot service body is designed to do. It’s the first service body to feature lightweight composite material throughout the construction of the body, including the understructure, bulkhead and tail skirt.

At 485 pounds, the service body is roughly the same weight as a pickup truck bed and more than 50 percent lighter than comparable steel bodies. The company says its 9-foot all-composite body is currently in the testing phase and will be suitable for aerial applications.

New Design with Your Success in Mind

When you work in fleet operations in the utility industry, you’re under intense pressure to juggle multiple roles – and to do them all well. You’re expected to be an engineer (to spec vehicles for maximum uptime and efficiency), a chief negotiator (to drive the lowest acquisition costs), a financial analyst (to squeeze more profit from operations), an organizational psychologist (to boost driver morale and productivity) and a risk manager (to improve safety and minimize exposure).

Yet there is only so much time in the day. When your attention is spread across various responsibilities, where do you find the time to gather the information you need to grow and excel in your work?

That’s what we seek to help you with through our redesign of Utility Fleet Professional magazine.

We understand that your time is precious and have structured the magazine accordingly, with shorter reads, insightful infographics and easier navigation. You’ll notice that we have added new departments, offering you more utility fleet news, advice and best practices in a more digestible format, so you can immediately apply all that you have learned.

In a sense, think of us at UFP as your research and education team. We save you time by pulling together the fleet management information and strategies you need to make your job more productive and less stressful.

So, what are the most pressing challenges impacting you and your fleet? Chances are, there are many others in the utility fleet community who are dealing with the same issues, and who could also benefit by learning practical tips and best practices from peers and industry experts. I encourage you to share your thoughts, challenges and concerns with me at The UFP staff strive to make your job easier by reaching out to the right experts, uncovering the best solutions and providing you with the most relevant, actionable information.

As your new editor of UFP, I am excited about where the magazine is headed and the opportunity to be a part of an amazing team. My passion is to ensure our content – both in print and online at – becomes indispensable to your success.

Sean M. Lyden


The Latest Developments in Crash Avoidance Systems

In July, Daimler, the parent company of Mercedes-Benz, debuted its fully autonomous Future Truck 2025 with an on-highway test drive on the Autobahn near Magdeburg, Germany.

And while a production model of the self-driving truck may be more than a decade away, many of the technologies required to make autonomous driving a reality are available today. They’re known as crash avoidance systems, which serve as an extra set of eyes to help keep drivers and the public safe.

Considering that 90 percent of all accidents in the U.S. are caused by human error, according to the Network of Employers for Traffic Safety, crash avoidance technologies could make a major impact on reducing accidents – and the costs associated with those crashes.

This is especially important to utility fleets because drivers of large aerial platform, digger derrick, and service trucks often must navigate congested roads and parking areas in residential and urban areas. These areas may have numerous potential blind spots to parked cars, property and even children who might dart in the way of the truck. All it takes is one preventable accident that causes a major injury or fatality to ignite a potential public relations firestorm.

How can you reduce preventable accidents to protect your drivers and your company’s reputation? Following are three crash avoidance technologies available today for commercial trucks.

Collision Avoidance Systems
What if your truck could see an obstruction as you drive in reverse and, as you get closer and closer, tell you the precise distance from potential impact so that you can effectively maneuver the vehicle and avoid damage?

That’s what the Collision Avoidance Systems Vehicle Reversing Aid is designed to do. Using ultrasonic echo location sonar, the system alerts the driver to potential obstacles, with an audio pulse alert that changes frequency as the vehicle backs closer to the obstacle.

The system also offers a Voice Distance Indicator module, which employs an audible voice to inform the driver how close the rear of the vehicle is from the obstruction. The voice calls out the distance in feet, starting at 12 feet. Then, as the vehicle reverses toward an obstacle, you hear the system say, “9 feet … 6 feet … 5 feet … 4 feet … 3 feet … 2 feet …18 inches …12 inches.” When the system senses the vehicle is fewer than 12 inches from an obstacle, the voice issues the urgent warning, “CRASH!”

Additionally, when a detected object suddenly moves outside the system’s sonar zone, the system issues a loud “OBJECT IN BLIND AREA!” warning message.

OnGuard Collision Mitigation System
Even with the best reflexes, you can’t always sense when traffic ahead of you will come to a sudden stop – until it may be too late. But what if your truck had the ability to automatically detect the danger and apply brakes as necessary to help you avoid a crash?

Enter OnGuard, a radar-based active safety system developed by Meritor WABCO, a joint venture between Troy, Mich.-based Meritor Inc. and WABCO Holdings Inc., which is headquartered in Piscataway, N.J.

OnGuard uses radar sensors and advanced algorithms to measure your truck’s position relative to other vehicles, alerting you to possible danger of collision using audible and visual warnings – through an in-cab display – so you can take corrective action.

If the system senses that a potential collision is impending, and the driver hasn’t adjusted course, OnGuard automatically de-throttles the engine and applies both the engine and foundation brakes to decelerate the truck.

Imagine that your truck had an extra “eye” that never got distracted and could see danger, even when you couldn’t, to alert you in time to do something about it.

That eye is Mobileye, which uses an intelligent camera system mounted on the vehicle’s dashboard to identify objects in your vehicle’s path that may pose threats, such as other vehicles, cyclists or pedestrians. The system continuously measures the distance and relative speeds of these objects to calculate the risk of your vehicle colliding with them.

The system can also detect lane markings and traffic signs, alerting drivers when they veer out of their lane or when they go over the speed limit. When Mobileye detects imminent danger, it issues visual and audio alerts in real time that warn the driver and give him or her sufficient time to make necessary corrections.

The Bottom Line
The promise of self-driving vehicles may be not be fully realized for another 10 to 20 years. However, fleets can at least begin to incorporate some of the component technologies available today to equip their vehicles – and drivers – to more effectively avoid crashes.

About the Author: Sean M. Lyden is a nationally recognized journalist and feature writer for a wide range of automotive and trucking trade publications, covering fleet management strategies, light- and medium-duty trucks, truck bodies and equipment, and green fuel technologies. He blogs at Strategy + Writing (

Crash Course on Collision Avoidance Terminology

Front Crash Prevention System: Uses various types of sensors – such as cameras, radar, or light detection and ranging – to detect when the vehicle is getting too close to one in front of it, issuing a warning and precharging the brakes to maximize their effect if the driver responds by braking.

Lane Departure Warning and Prevention System: Uses cameras to track the vehicle’s position within the lane, alerting the driver if the vehicle is in danger of inadvertently straying across lane markings.

Blind Spot Detection System: Uses sensors to monitor the side of the vehicle to detect vehicles approaching blind spots.

Park Assist and Backover Prevention System: Uses cameras and sensors to help the driver avoid objects behind the vehicle when backing up.

Source: Insurance Institute for Highway Safety (

Terex 2 Web

Spec’ing Digger Derricks for Maximum Productivity

A truck-mounted digger derrick is designed to enable utility companies to dig holes and set poles for electric power transmission and distribution systems.

In an ideal scenario, the derrick should be able to perform both functions – digging and lifting – without your crew having to reposition the truck. This way, your team can get more jobs done in less time, improving service to customers and bolstering your bottom line.

“If you select a derrick that’s too small for the job, you might be able to dig a hole from a certain position. But when you want to set the pole, the load capacity at the truck’s current position might not be sufficient to lift the pole,” said Jon Promersberger, engineer, new product development for Terex Utilities (, a global manufacturer of aerial work platforms and digger derricks. “So you have to move the truck to achieve the proper boom angle and lift capacity to do the job, which wastes a lot of time. If you’re going to dig your hole at 20 feet from the truck, you want to spec the derrick to allow you to also set the pole at 20 feet.”

But with a wide range of weight capacities, boom lengths and other factors to consider, how do you determine the right spec for your application?

Derrick Terminology
Begin by gaining a working knowledge of some of the key terms the industry has used to describe a derrick’s capabilities.

Maximum Capacity
This has been the historic metric for classifying derricks, defined as the maximum lifting capacity when the boom is fully retracted at its highest angle.

“Basically, maximum capacity is what’s measured when the boom is straight up in the air. If you had to lift something that’s heavy, and the boom is real close to the truck, it would tell the derrick’s capability in performing that function at that angle – and that’s about all. It doesn’t say anything about the capability of that boom at other angles,” Promersberger said.

Chris Barnes, derrick marketing manager for Altec (, an aerial equipment manufacturer and service provider for the electrical utility market, agrees. “The term is essentially meaningless today because there is virtually nothing you can pick up that close to the derrick. The truck and the outriggers [stabilizer legs] get in the way.”

Capacity at 10-Foot Radius
Realizing the limits of maximum capacity as a useful metric for selecting a derrick, the industry developed a new measure in the 1980s – capacity at 10-foot radius – to provide deeper insight into a derrick’s real-world capabilities. It defines how much weight the derrick can lift when the load is 10 feet from the center of the truck.

“Ten feet became an industry standard because it was likely the minimum load radius that could be useful in real-world applications,” Barnes explained.

But when comparing derricks based on the 10-foot rating, make sure the lifting capacity is the same from all boom positions, Barnes advised. “A derrick may have a higher capacity number when the boom is positioned to the rear of the truck than it would off the side, so you want to confirm with your manufacturer that you’ve accounted for any potential discrepancies.”

Sheave Height
A sheave (pronounced “shiv”) is the pulley at the tip of the boom. Therefore, “sheave height” is defined as the maximum height of the boom when it is fully extended and elevated, assuming a 40-inch frame height of the chassis.

“Sheave height impacts what size pole the derrick can lift and the machine’s optimal digging radius,” Barnes said. “This is especially important because the minimum and maximum digging radius is really the envelope in which your derrick will be operating much of the time.”

Although there is no universal rule on matching a derrick’s sheave height to pole height, Promersberger offered this general guideline: Select a sheave height that’s about two-thirds of the length of the pole you intend to lift and set. For example, if the pole is 90 feet high, you would spec a sheave height of about 60 feet.

Digging Deeper
While terms like “maximum capacity,” “capacity at 10-foot radius” and “sheave height” can help you narrow down the general requirements for your derrick spec, you’ll have to dig deeper into the details of your application to identify the specifications that meet the unique needs of your application.

So, as you evaluate your derrick requirements, keep these factors in mind:
• What size pole will the derrick be setting? Consider height, diameter and weight.
• What soil type will the derrick be digging? Will it be topsoil, sand, clay, limestone or another type?
• Will the soil be wet or dry?
• What equipment and gear will be hauled on the truck? How much will that cargo weigh at maximum load?
• What gross vehicle weight rating chassis will be required to meet derrick and payload requirements?

One online tool to help you dig deeper into the specifics of your application is Terex’s Work Zone Capacity Calculator (, which takes into account not only the derrick’s boom lifting capacity, but also the auger (drill) digging and lifting capabilities best suited for your needs.

Also, make sure you’ve covered all your bases by working closely with your derrick manufacturer throughout the specification process. They can walk you through the load capacity charts specific to their products to determine the machine’s capabilities at various load angles and sheave heights, to ensure the derrick is right for all aspects of your application.

High Stakes
When you consider that a typical digger derrick has a six-figure price tag, the stakes are high to get the spec right. Be crystal clear about the derrick’s job description and lean on your equipment manufacturer to help you align the derrick spec for the application to maximize productivity – and your return on investment.

About the Author: Sean M. Lyden is a nationally recognized journalist and feature writer for a wide range of automotive and trucking trade publications, covering fleet management strategies, light- and medium-duty trucks, truck bodies and equipment, and green fuel technologies. He blogs at Strategy + Writing (


Four Technologies That Curb Distracted Driving

Bing! A new text message. Your phone is facedown on the passenger seat. You know you should ignore it and keep your eyes on the road, but you’re curious. Is it urgent? Is it my boss? A quick look won’t hurt, right? I’m a good driver; I can handle this!

But the research says otherwise.

Five seconds is the average time your eyes are off the road while texting – enough time to cover the length of a football field blindfolded at 55 mph, according to the Virginia Tech Transportation Institute (VTTI).

VTTI also says that visual-manual tasks such as reaching for a phone, dialing and texting increase the risk of getting into a crash by three times.

That’s why, as of press time, 44 states have banned text messaging for drivers. And 12 states prohibit any use of hand-held cell phones while driving. (For the latest information about state laws on distracted driving, visit

Mobile devices are powerful tools to boost productivity for workers in the field. But they also can put your drivers – and the public – in danger if used while driving, increasing your company’s exposure to lawsuits and the likelihood of costly negative publicity.

It’s not enough to craft a strong policy to curb distracted driving; you also have to be able to effectively enforce that policy. But how can you ensure drivers won’t put themselves and your organization at risk when you can’t be in the cab to monitor their behavior? Following are four technologies designed to help solve that problem.

The Origo system requires drivers to place their phone in a docking station to start the vehicle. The driver can then engage hands-free technology, with allowable phone capabilities configured by the administrator.

If the phone is removed from the docking station at any time during a trip, the system will sound an alarm until the phone is replaced. The next time the driver tries to start the vehicle, he or she will be forced to contact the administrator in order for the phone to be reauthorized.

If the phone is lost or stolen, a one-time use code can be obtained from the administrator to start the vehicle. If the vehicle is taken to be serviced, the administrator would provide the guest driver with a PIN, and the technician would be able to normally operate the vehicle.

Cellcontrol has developed an enterprise mobile enforcement technology for fleets that directly integrates with the vehicle and installs on mobile phones, laptops and tablets. Once the system is installed, no driver interaction is required.

The company’s new DriveID module, which is placed on the vehicle’s windshield, can automatically detect who sits in the driver’s seat and only applies the safety policy to that individual’s mobile devices, leaving passengers free to talk, text and browse the Web on their devices.

As the account administrator, you set the policy. So, if you want to allow drivers to make calls and use navigation, but not browse or text, you can configure the system accordingly.

FleetSafer works with most smartphones and tablets. When employees start to drive, the system senses vehicle movement – through GPS, an onboard diagnostics (OBD) port device or telematics – and locks the phone’s screen, preventing access to text, email and browser applications. Inbound text and email alerts are suppressed and a custom reply is automatically sent informing others when the employee is busy driving.

With FleetSafer, the administrator sets the policies, defining how many or how few of the phone’s features are available while driving. Options include hands-free phone operation, white-listing – which allows inbound calls from authorized phone numbers, while blocking others – and select application permissions, such as enabling navigation.

Kyrus Mobile
The Kyrus Mobile solution is installed on each cell phone or mobile device and then paired with a Bluetooth module that is plugged into the vehicle’s OBD-II port (for cars and light trucks) or J1939 port (for heavy trucks and buses). When the vehicle starts to move, the system enables a safe mode that prevents the driver from using the cell phone until the vehicle stops.

Users cannot type or read text messages or emails, nor can they surf the Web or use other distracting applications. Administrators have the option of banning all voice calls or permitting voice calls, if done through a Bluetooth earpiece and using voice-based dialing. If drivers attempt to tamper with the system, management is notified through email alerts.

Eliminate Temptation 
Oftentimes, the urge to pick up a mobile device while driving is too strong to resist. So, why not eliminate the temptation altogether? That’s what these four technologies are designed to do, empowering you to effectively manage and enforce your company’s distracted driving policy across your entire fleet.

About the Author: Sean M. Lyden is a nationally recognized journalist and feature writer for a wide range of automotive and trucking trade publications, covering fleet management strategies, light- and medium-duty trucks, truck bodies and equipment, and green fuel technologies. He blogs at Strategy + Writing (

Distracted Driving Facts
• Ten percent of fatal crashes, 19 percent of injury crashes and 16 percent of all motor vehicle crashes in 2012 were reported as distraction-affected crashes.
• In 2012, there were 3,328 people killed and an estimated additional 421,000 injured in motor vehicle crashes involving distracted drivers.
• Drivers under 25 are two to three times more likely than older drivers to send text messages or emails while driving.

Source: National Highway Traffic Safety Administration


Five-Point Checklist for Selecting the Right Service Van for the Job

The cargo van landscape has undergone an extreme makeover the last few years, providing more options than ever for utility fleet managers to consider when purchasing new vans.

In 2008, there was only one small van available in the U.S. – the Ram C/V Tradesman, a stripped-down version of the Dodge Caravan. But then came the Ford Transit Connect in 2009, with the Nissan NV200, Chevrolet City Express and Ram ProMaster City (expected 2015 model year) also entering the fray.

The full-size van market has also experienced a major transformation since 2008, when there were only three players: GM (Chevrolet Express/GMC Savana), Ford (E-Series) and Freightliner/Mercedes (Sprinter).

Today, there are five automakers in this segment, offering a much wider range of configurations and capabilities. Ram (formerly Dodge) recently re-entered the full-size segment with its ProMaster. Nissan launched its NV full-size van in 2011. And Ford is phasing out its traditional E-Series van in favor of the new high-roof, Euro-style Transit.

So, how do you sort through all the new options to select the right van for your fleet operations? Use this five-point checklist as your guide.

1. Payload Capacity
What equipment, parts, tools and products will the van be hauling? How much will that cargo weigh at maximum load? Your answer to the weight question will help you determine what size van you need (see “Van Classifications” sidebar).

As fuel costs continue to escalate, a growing number of fleets have been considering whether to move out of full-size vans and into more fuel-efficient compacts, like the Ford Transit Connect and Nissan NV200. But before you downsize, make sure that the actual payload is in line with the smaller van’s capabilities, cautioned Mike DeCesare, regional truck manager for ARI (, a full-service fleet management firm.

“Although very fuel-efficient, mini cargo vans are extremely easy to overload,” DeCesare said. “Where the fit is right, there could be tens of thousands of dollars in fuel savings, but companies would be wise to make sure that the van they select can actually do the job. Otherwise, a less expensive, more fuel-efficient van could end up being a very costly mistake if it’s not up to the task.”

2. Trailer Capacity
Will the van pull a trailer on a regular basis? If so, what will be the total weight of the trailer and its cargo at maximum load?

This is an important consideration because van manufacturer and engine selection are impacted depending on how much weight the van needs to pull.

Take one-ton vans, for example. The Chevrolet Express 3500 offers maximum trailer capacities of 7,400 pounds with a 4.8-liter V-8 gas engine, and 10,000 pounds with the 6.6-liter V-8 Duramax diesel engine, whereas the Ram ProMaster 3500 is limited to 5,100 pounds towing.

Both are one-ton vans, but there’s a wide gap in their towing capabilities. And even with the Chevrolet Express 3500, engine selection alone can make the difference of more than 2,500 pounds in trailer capacity. So, check the trailering guidelines for any of the vans you’re considering to confirm they can do the job.

3. Van Length/Wheelbase Options
How much space do you need inside the cargo area at maximum load?

If you’re considering a full-size van, you’ll have multiple wheelbase options to consider that impact cargo volume. For applications that require hauling pipe, conduit and other long materials inside the van, the extended wheelbase options give you that flexibility.

4. Roof Height Options
Will your drivers spend a lot of time working inside the cargo area of the van?

If so, the Euro-style full-size vans – such as the Ford Transit, Ram ProMaster, Freightliner Sprinter and Nissan NV – offer high-roof options, with cargo area heights above 6 feet, in some cases, that make it easier and safer for drivers to work inside the van without having to strain or bend down.

5. Gas vs. Diesel
Most full-size vans offer the option for gas or diesel. But with an upfront premium of $7,000 to $10,000 for diesel, how do you determine which is the best engine for the job – and your budget?

One factor to consider is the projected annual miles for the vehicle. “Since diesel tends to be more fuel-efficient than gas, the vehicle needs to travel about 40,000 miles per year to recoup the upfront investment in diesel through fuel cost savings within a reasonable time period,” said Don Scare, manager of truck excellence for fleet management firm PHH Arval (, now part of Element Financial Corp.

In addition to better fuel economy, diesel also offers higher torque for towing and driving on mountainous terrain.

“The key question is, what’s the ROI? Because at the end of the day, you’re looking at about a several-thousand-dollar investment to go to diesel. The application needs to justify that higher investment,” Scare said.

Keep TCO in Mind
When it comes to proper van selection, “always keep total cost of ownership in mind,” advised Marcin Michno, business consultant, enterprise consulting and analytics for PHH Arval. “If you have a van that’s not spec’d correctly, then you risk driving up operating expenses [in terms of excessive repair and fuel costs] while diminishing resale value due to excessive wear and tear. In the end, choosing the right van with the right specification makes a huge difference in the total cost of ownership of that vehicle.”

About the Author: Sean M. Lyden is a nationally recognized journalist and feature writer for a wide range of automotive and trucking trade publications, covering fleet management strategies, light- and medium-duty trucks, truck bodies and equipment, and green fuel technologies. He blogs at Strategy + Writing (

Van Classifications
Consider the four van classifications below and their corresponding payload capacities as you evaluate the optimal van size for your requirements.

Examples: Ford Transit Connect, Nissan NV200
Payload Capacity: 1,500-1,700 pounds

Examples: Chevrolet Express 1500, Nissan NV1500
Payload Capacity: 2,300-2,500 pounds

Examples: Ford Transit-250, GMC Savana 2500
Payload Capacity: 3,000-3,300 pounds

Examples: Ram ProMaster 3500, Ford Transit-350
Payload Capacity: 4,000-4,600 pounds

Note: Although terms like “half-ton” and “one-ton” historically corresponded with actual payload capacity, today – as you can tell – that’s not the case. However, the industry has retained those terms as standard classifications for trucks and vans.


Latest Developments in Self-Inflating Tires

What if tires could inflate themselves and maintain optimal pressure at all times, with no human intervention required? How much of an impact could that make on fuel efficiency, tire life cycle, driver safety and a fleet’s bottom line?

New self-inflating tire technologies being developed today may provide a glimpse into future possibilities.

Cost of (Improper) Inflation
According to the U.S. Environmental Protection Agency, a tire that’s underinflated by just 10 pounds per square inch (psi) can reduce fuel efficiency by up to 1 percent per tire.

That’s because an underinflated tire, as it flexes, creates greater friction with the road surface, requiring more energy – or fuel – for the vehicle to overcome the added resistance.

This friction also causes heat to build up in the tire, leading to accelerated deterioration and increased risk of blowout. A report by the Technology & Maintenance Council of the American Trucking Associations on tire pressure monitoring and inflation maintenance states that tires operating constantly at 20 percent below appropriate pressure levels could increase the wear of the tread by 25 percent.

The challenge is that many fleets don’t do a great job of keeping up with tire pressure on a regular basis, with more than half of truck tires on the road operating outside of their target pressure range, according to research by the Federal Motor Carrier Safety Administration.

This is important because tires left on their own, just by natural diffusion, will leak about 2 psi per month. Then there’s the issue of pressure fluctuations resulting from extreme climate temperatures that impact tire performance and longevity. So, it can be difficult and often impractical for fleet managers and drivers to manually keep up with tire pressures all the time.

Self-Contained, Self-Inflating System
One solution under development is Goodyear’s Air Maintenance Technology (AMT), a self-maintaining tire inflation system that enables tires to remain inflated at the optimum pressure without the need for any external pumps or electronics. All components of the system, including the miniaturized pump, are fully contained within the tire.

The project was unveiled in 2011 and has been aided by a $1.5 million grant from the U.S. Department of Energy’s Vehicle Technologies Office. The grant money funds research, development and demonstration of the AMT system for commercial truck tires.

How does AMT work?

“AMT has an internal regulator that senses when the tire inflation pressure has dropped below a specified level,” explained John Kotanides Jr., project manager at Goodyear ( in the Akron, Ohio-based Global Innovations Group. “Once the system senses the pressure drop, the regulator opens to allow air to flow into a pumping tube. And as the tire rolls down the road, under the load of the vehicle, the deflection of the tire will flatten that pumping tube, pushing puffs of air back into the tire through the inlet valve. The air flows into the tire cavity and continues to fill the tire as it rolls down the road until the regulator senses that the specified tire pressure has been met and then shuts the system off, until it senses another pressure drop.”

Kotanides said that the company expects to begin piloting AMT on commercial trucks by the end of 2014, but he could not comment on pricing and when the system will be available for sale.

What fleet applications will benefit from AMT?

“Right now, our focus is on the long-haul Class 8 tractor-trailer setup. But we think this type of system could work on almost any tire that has inflation and that travels down the road under a load,” Kotanides said.

Bolt-On Hub System
Another solution to the problem of underinflated tires is Halo, which was launched earlier this year by Burlingame, Calif., startup Aperia Technologies (

Halo is mounted outside the tire, onto a truck’s axle hub, and is designed to use a wheel’s rotation to maintain optimal tire pressure in dual and wide-based tires on the drive and trailer axles of trucks, tractors, trailers and buses.

“Halo operates on a similar principle to a self-winding watch,” said Josh Carter, chief executive officer and co-founder of Aperia. “It uses a wheel’s rotational motion to pump and maintain optimal tire pressure and therefore does not require any connection to a compressor.”

This is an important distinction because using compressors to power self-inflating tires increases complexity – and cost – and could add weight to a level that negates the fuel economy savings generated by maintaining proper tire pressure in the first place.

Carter said that Halo, which bolts on to the hub on each side of an axle, weighs about 5 pounds per unit and requires fewer than 10 minutes to install by a service technician, without expensive tools.

Since the system is mounted on the axle hub and not integrated into the tire itself, each Halo unit can be remounted for use with multiple sets of tires for up to 500,000 miles or 10 years, the company said.

This bolt-on approach also gives fleet managers flexibility in tire choices, Carter said. “Fleets have a lot of loyalty with a tire manufacturer and they get into a groove with a tire program. With Halo, they can use whichever tire manufacturer they want.”

Carter said that Aperia’s first Halo production run was allocated quickly after launching in March, and the company is currently taking orders for the next round of production. List price is $299 per unit.

Will this system be made available for applications besides long-haul trucking, such as utility fleets?

“Right now our focus is on Class 7 to 8 trucks, primarily those used in long-haul applications because of the payback time frame those fleets can expect from cost savings driven by improved fuel economy,” Carter said. “But we have received a lot of interest for tailoring the system for a wider range of truck sizes and applications. And we have plans in place to conduct a pilot program for the utility market later this year.”

The Bottom Line
Since tire inflation is a critical factor to reducing fuel consumption and overall fleet operational costs, it’s likely that some form of self-inflating tire technology will gain widespread market acceptance. But when? And will the systems of the future look more like Goodyear’s AMT that is integrated within each tire or Aperia’s Halo that is bolted on to the axle hub outside the tire? Or will there be a new, even more effective approach to solving this problem? Keep your eye on this space.

About the Author: Sean M. Lyden is a nationally recognized journalist and feature writer for a wide range of automotive and trucking trade publications, covering fleet management strategies, light- and medium-duty trucks, truck bodies and equipment, and green fuel technologies. He blogs at Strategy + Writing (

Utility Fleet Professional

360 Memorial Drive, Suite 10, Crystal Lake, IL 60014 | 815.459.1796


Utility Fleet Professional is produced by Utility Business Media, Inc.   View Capabilities Statement

Get the Utility Fleet Professional Digital Edition App
Get the Utility Fleet Professional Digital Edition App

Get the iP Digital Edition App

© All rights reserved.
Back to Top