Tag: Natural Gas Vehicles

Green-Fleets-Web

HTUF Report

HTUF REPORT
Held in mid-September in Charlotte, N.C., the 11th Annual High-Efficiency Truck Users Forum served again as an educational and networking event for manufacturers, suppliers, fleets and government officials interested in learning the latest about high-efficiency truck technology.

HTUF has been very successful in helping launch the first production of hybrid trucks and is credited with reducing product development time by up to two years. When the conference was first held, no major truck manufacturer was offering electric or hybrid trucks. Today, there are more than 30 different electric, hybrid electric, hydraulic hybrid and workplace hybrid trucks available.

At this year’s conference, three federal government and private industry representatives took center stage. Heather Zichal, deputy assistant to the president for energy and climate change, discussed policy initiatives to create clean energy jobs, tackle climate change and reduce dependence on oil.

Also on the HTUF agenda was Dr. Dane Boysen, program director at the Advanced Research Projects Agency-Energy, who addressed technology research and development initiatives that ARPA-e is funding and how they are accelerating advanced technology market penetration. ARPA-e has made investments in advanced batteries, electric motors and lightweight materials that could enable fleets to dramatically reduce reliance on oil over the next decade. HTUF also featured David Mohler, senior vice president and chief technology officer at Duke Energy, who covered the increasing connections between vehicles, the grid and saving energy.

“We are very pleased to have secured key leading officials from the federal government and industry at HTUF,” said John Boesel, CALSTART president and CEO. “Clean energy jobs and reducing our dependence on oil are core elements of the president’s energy policy, and the Pentagon continues to focus on energy efficiency as a critical component of the nation’s energy security.

“Beyond conventional clean diesel engines, there are now at least five different advanced propulsion systems for commercial and military trucks,” Boesel continued. “At this year’s conference, fleets learned how each of these new drivetrains can be applied and utilized. Never before have there been such opportunities to cost-effectively transition away from dependence on the highly volatile and unstable world oil market.” Visit www.htuf.org.

Odyne Systems Showcases Plug-In Hybrid Systems
Odyne Systems LLC, a manufacturer of hybrid systems for medium- and heavy-duty work trucks, displayed its hybrid propulsion system on a Ford F-750 chassis at HTUF. Odyne plug-in hybrid systems are designed to interface with a wide variety of truck-mounted equipment. Driven through the Allison 3000 RDS transmission, the system uses a Remy electric motor in parallel with the existing drivetrain to provide launch assist and regenerative braking. At the job site, the Johnson Controls’ lithium-ion battery packs power work site applications. Visit www.odyne.com.

Kenworth Delivers with T440 CNG Truck
Kenworth Truck Co. showcased a Kenworth T440 compressed natural gas (CNG) tractor during HTUF. The T440 CNG is equipped with an 8.9-liter Cummins Westport ISL G engine and a six-speed Allison 3000 HS transmission. The model is available as a straight truck or tractor in a gross vehicle weight ranging from a heavy Class 7 vehicle at 33,000 pounds to a light Class 8 at 68,000 pounds. The ISL G engine uses a maintenance-free, three-way catalyst. Rated at 320 HP and 1,000 pounds per feet of torque, the engine’s torque curve closely matches that of its diesel counterparts. Visit www.kenworth.com.

PG&E REPORTS ON ELECTRIFICATION SAVINGS
The Electrification Coalition, a nonpartisan, not-for-profit group of business leaders committed to promoting policies and actions that facilitate the deployment of electric vehicles on a mass scale, has issued the following report on the electrification of the Pacific Gas & Electric fleet.

In 2011, the Pacific Gas & Electric vehicle fleet racked up 114 million miles of travel, many of them logged servicing lines and other equipment that deliver power to customers. As a critical service provider, PG&E must purchase vehicles capable of supporting its mission in low-probability, high-impact situations like severe unplanned power outages. In these scenarios, vehicles must sometimes travel great distances across the company’s service territory and then operate buckets and other repair equipment once on site. In fact, even routine service calls can vary greatly by distance, necessitating flexibility and putting a premium on range and refueling.

Because its vehicles have a low level of route predictability, PG&E is pursuing an acquisition strategy that prioritizes plug-in hybrid electric vehicles (PHEV) and electric work-site idle management systems (EWIMS), which are plug-in vehicles whose batteries provide power for a range of job site functions, but do not move the wheels. PG&E’s fleet of PHEVs is generally spread throughout its passenger cars and pickup trucks. The passenger cars are typically pool vehicles used by employees for work-related travel. These vehicles tend to travel only short distances. The pickup trucks are primarily work trucks, but are also driven by job site supervisors and foremen. PG&E’s EWIMS are Class 6 trucks and are a mix of bucket trucks and material handlers.

In addition to extended range, PG&E’s emerging fleet of PHEV pickup trucks provides the company with an additional strategic benefit. A typical PHEV relies largely on its onboard battery for power over a given mileage range. When the battery is depleted to specific level, the vehicle then relies on an onboard gasoline-powered generator to provide power to the battery, operating essentially as a gasoline-electric hybrid. PG&E has recently begun deploying a handful of retrofitted PHEV pickup trucks manufactured by companies like Orem, Utah-based VIA Motors. These vehicles currently feature between 15 and 100 kW of exportable power, and there is potential to increase that number. When these vehicles are on a job site, their onboard generator can bypass the battery and export electricity to a different destination like power tools or even a transformer.

Work site management technology is a logical fit for the duty cycle associated with PG&E’s Class 6 bucket trucks. These vehicles, which are typically located at a job site for six to eight hours per day, often consume more diesel fuel idling than driving. This is because work site repair functions – operation of the bucket and associated equipment – normally require the truck to be running, using its engine as a generator. It’s an inefficient use of fuel, but has historically been the only option. Today’s EWIMS technology utilizes an onboard battery to power job site equipment, allowing the engine to be turned off and saving fuel. The battery can be recharged by plugging into the grid or by a secondary onboard alternator that provides electricity to the battery while the vehicle is driving. The savings associated with the technology are substantial: In 2011 alone, PG&E saved more than $700,000 on fuel across its fleet of 178 EWIMS work trucks manufactured by Birmingham, Ala.-based Altec.

Finally, as an electric utility, PG&E arguably has an elevated level of interest in understanding plug-in electric vehicles (PEV) and working to support their commercialization. By the end of 2012, the company will own a total of 400 PEVs, ranking it solidly among the top three U.S. commercial fleets in terms of PEV ownership. Perhaps more interestingly, PG&E’s current fleet of PEVs have been sourced from seven different original equipment manufacturers.

A number of factors were taken into consideration as PG&E explored the possibility of adding PEVs to its fleet. The vehicles carry a great deal of promise due to a number of economic, regulatory and environmental benefits, but there are also a number of important challenges. PG&E offered insight into its decision-making process by ranking various factors and discussing their rationale around each one in detail.

Total Cost of Ownership: A vehicle’s total cost of ownership (TCO) – its upfront capital costs combined with operating costs over a specific number of years or miles traveled – is a standard tool for comparing the economics of various technologies. However, while TCO may provide a useful starting point for comparison in the abstract, a vehicle’s purchase price is a more pressing real-world consideration for many fleet operators, PG&E included. This is particularly the case when it comes to purchasing new technologies like PEVs. Any assessment of TCO will necessarily be based on a series of assumptions about performance, some of which may ultimately be less precise for the first generation of a given technology. This type of uncertainty ultimately increases the level of risk placed on the fleet customer. Utilities like PG&E can be particularly capital constrained, in the sense that budgets are often set several years in advance through regulatory filings. Therefore, the higher capital cost of PEV purchases either has to be justified to the regulator – and ultimately the rate payer – or it has to displace other spending. If a plug-in vehicle carries a cost premium of 25 percent, it means a utility with a fixed budget can only purchase four PEVs for the same cost as five traditional vehicles, leaving one vehicle in need of replacement in the field. This attrition represents an operational risk that no utility would likely take on. Therefore, in evaluating the size and timing of its PEV purchases, PG&E is mostly focused on the impact these acquisitions will have on capital budgets. Whether a fleet manager purchases or leases a vehicle, there is a monthly payment associated with it. For PEVs, this payment is currently higher than the payment for a comparable traditional vehicle. If the net of this capital premium less operational savings (reduced fuel expenditures) results in a higher total monthly outlay, it becomes hard to justify. There is intense competition for capital within PG&E, and the higher payment associated with a PEV purchase is capital that is unavailable to be spent on other projects – or booked as profit.

Access to Competitive Financing: Increasingly, fleet customers are looking to commercial financing entities to help manage the capital cost challenge of PEVs. Of course, financing is not a magic wand that can make something inherently expensive become cheap. So what PG&E is particularly interested in is managing the cost structure of PEV purchases as opposed to managing the actual cost of the vehicles. Actual vehicle costs will decline over time due to some combination of manufacturing scale and technological improvements, but the cost structure – that is, the way customers deal with the price premium on PEVs – could potentially be addressed in the near term. One possible avenue to cost management through competitive financing is an extended term on vehicle useful life. For example, PG&E currently finances its purchases of pickup trucks in line with industry common practice, which typically assumes a six- or seven-year vehicle life. However, publicly available data confirms that the age of the average light-duty truck on the road in the United States has increased every year since 2000 and now stands at more than 10 years. By extending the vehicle useful life assumed in standard financing packages for these trucks by three years, the cost premium would be spread out over a greater term, giving fleet customers more capital flexibility and encouraging more PEV purchases. It’s a challenging proposition for an unproven technology, but it’s one way PG&E is working to manage cost.

Operational Benefits: Another option for managing costs is to make sure you are capturing all the benefits. Generally speaking, in terms of performance, utilities get graded on two things: the number of service outages and the duration of those outages. In measuring the number of outages, there is essentially no discrimination between an outage that affects 10 customers and one that affects 10,000 customers. Moreover, regulators do not discriminate between outages that are unplanned and those that are planned. While unplanned outages arising from weather and other unexpected events account for some of PG&E’s service calls, planned outages to repair lines and upgrade transformers account for a substantial portion of total outages. While VIA Motors’ PHEV pickup trucks currently allow for just 15 kW of exportable power, the company is working to increase that capacity to 50 kW. In larger applications, like a retrofitted Ford F-450 from Electric Vehicles International, PG&E believes it is already possible to get close to 100 kW. Altec’s Class 6 EWIMS truck currently features 3 kW of exportable power. Considering that the power needs of the average home in California today are roughly 5 kilowatts, the possibilities for providing backup power to homes – even whole neighborhoods – during outages could be significant. Put another way, the largest portion of neighborhood transformers in the PG&E service territory are fewer than 100 kW (125 kVA). While reliably exporting this kind of power is still a speculative prospect at this point, PG&E believes it is possible to get there in the near term. If accomplished, it’s a technological milestone that would fundamentally change the utility business, allowing companies like PG&E to virtually eliminate planned outages arising from transformer maintenance and upgrades. In a business built around service reliability, this kind of operational advantage could be a game changer for improving customer relations and strengthening utilities’ standing with regulators.

Vehicle Maintenance Savings: PG&E is realizing real savings on maintenance costs for its fleet of PEVs. Conventional wisdom suggests that the savings on maintenance compared to traditional internal combustion engine (ICE) vehicles will be greatest for battery electric vehicles (EVs). This is because the EV drivetrain has the fewest moving parts relative to internal combustion engine vehicles. PHEVs, which retain the use of an engine and fueling system, still require oil and other fuel changes as well as general engine maintenance. Nonetheless, PG&E reports that spending on these maintenance items for its fleet of Chevy Volt PHEVs is lower than spending on comparable ICE models. PG&E attributes the savings to the relatively high portion of electric miles driven by its Chevy Volts, which have an all-electric range of 30 to 40 miles. Employees’ average trip in San Francisco, where the bulk of PG&E’s Volts are located, is just 11 miles. Two notable categories of maintenance savings being captured by PG&E are reduced spending on brake pads and tires for vehicles in San Francisco. The city’s hilly terrain takes a toll on vehicle brakes, which the company estimates it replaces every six months for traditional ICE vehicles. However, initial experience suggests that the brake pads on PG&E’s fleet of Chevy Volt PHEVs will last as long as two years between replacements under the same conditions due to regenerative braking. By essentially running the vehicle’s electric motor in reverse, regenerative braking slows the Volt as soon as the driver lets off the accelerator, converting this kinetic energy into electricity that helps recharge the battery. During actual braking, the regenerative system augments the conventional braking system, a process that offsets friction that wears on the pads. At the same time, it appears that this process is also reducing wear on tires that occurs normally during harder stopping, leading to less frequent tire replacement.

Electric Vehicle Charging Infrastructure: By focusing on PHEVs and EWIMS work trucks, PG&E’s vehicle electrification strategy fundamentally avoids reliance on public charging infrastructure. However, charging infrastructure located at a vehicle’s overnight parking location is still of high importance for recharging the battery after a typical day’s use. In some cases, PEVs are driven home by employees. But in other cases – such as pool vehicles – a number of units are parked at a central facility. In these cases, PG&E reports that that the cost of installing charging infrastructure can be a significant challenge. In 2011, PG&E installed 35 charging stations for pool vehicles at its downtown San Francisco headquarters. The units were installed in an underground secure parking facility. The hardware cost for individual chargers was extremely manageable at approximately $800 per unit. However, construction costs for running power into the underground facility from the street above are estimated to have been roughly $350,000 – more than 90 percent of the total project cost. PG&E reports that the necessary additional wiring ran only 350 feet, placing the cost at $1,000 per foot. The lesson as always is that cracking concrete for charging infrastructure installation is likely to be expensive in most cases. This is especially true when facilities are being retrofit, particularly in high-cost urban areas. Where companies or government agencies have the opportunity to incorporate charging infrastructure into new construction, costs can be dramatically reduced and better managed.

Sam Ori, director of policy at the Electrification Coalition, recently sat down with Dave Meisel, director of transportation services at PG&E, to get a firsthand understanding of how the company’s electrification strategy is playing out in a real-world project. What follows are highlights from the discussion.

You often talk about the unexpected benefits of PEVs for your broader business. How do EWIMS fit into that?
One of the biggest things that we have seen with our EWIMS is the noise reduction. On our traditional bucket trucks, everything is PTO-driven. A mechanical shaft from the engine runs a pump and that’s what moves the bucket. So to operate the bucket, you have to have the truck running, and it makes a lot of noise. But in residential areas of San Francisco, there are noise restrictions in place that essentially make it impossible for us to do routine work using conventional trucks between 7 p.m. and 7 a.m. That’s no longer an issue with an electric bucket because it’s silent. The engine is off. It’s expanded the workday by 100 percent – from 12 hours to 24 hours. In the past, if a PG&E crew was doing new construction and it got to be 7 p.m., they had to stop. It didn’t matter if there were just two hours of work to go. They had to stop, take the whole site down – which could take about an hour – go home for the night and then come back again in the morning. At that point, they had set everything back up again – which takes another hour – do two hours of work and then take it down again. With an EWIMS bucket truck, they can just work the additional two hours on the first day and be done, avoiding unnecessary time spent getting to and from the job as well as costly setup and takedown hours. The customer is happier and we’re more efficient.

How have the drivers reacted?
I’ll go back to the noise. In the utility business, you often work in pairs. One crew member is up in the bucket and the other is at the ground level. With a traditional bucket, the crew has to communicate over the noise of a running vehicle, which can really be a challenge. But in the case of an EWIMS truck, the engine is off and it’s quiet, so communication is much, much easier. Drivers absolutely love that. I would also add that, especially in our business, an enhanced level of communication actually puts our employees in a much safer situation. When a crew member in the bucket is talking to his colleague on the ground, he is trying to get a handle on critical information that has a material impact on job safety. Making it easier to communicate and have a higher level of confidence in information has been a huge hit with our employees. That enhanced feeling of safety is something that happens every time you go to work. Without question there are other benefits. The work crews certainly appreciate not having to be around the tailpipe emissions of a traditional diesel vehicle idling on a job site over a period of several hours. And the abatement of those emissions is also good for urban air quality. That’s a significant plus for us as a corporation.

The EWIMS technology is really a perfectly customized solution. How did you get there?
The drivers of these vehicles are some of our most highly skilled personnel. They are generally our first responders. What that means operationally is that they do a lot of tickets in a single day – lots of shorter stops to deal with pressing issues. They are at an individual site for an average of maybe two hours. They make a fix and move on to the next job. We wanted a system that would work off the battery and be capable of plugging in to the grid, but that couldn’t be the only way the battery recharged. So we developed the secondary alternator that recharges the battery as the vehicle moves from job to job. We also made sure that the battery was big enough to cover all of the work that would be done in a normal day without running the vehicle at any job site. To get there I would say we worked hand in hand with Altec. They have about 70 percent of the U.S. market for bucket trucks, so they understand our business and have a commitment to customer solutions. Our vehicle design and engineering team at PG&E had an idea for an electric bucket system that we felt would save us money and provide a whole range of operational efficiencies. We sketched out our idea in principle, took it to Altec and six months later the first vehicle rolled off the production line. It has worked out really well.

People often talk about the economics of these technologies in broad generalities. What can you say about your experience?
I can tell you that we are getting about a two-and-a-half-year payback on our Class 6 EWIMS trucks. We make business decisions to make money, plain and simple. So we wouldn’t be doing this if it didn’t work for the company. To me, it all goes back to lining up the right technology with the right application. People think electrification has to be about the propulsion system only. But that isn’t where we are using the most fuel in this particular application. Electrify where it makes sense to electrify. The fleet industry uses PTO shafts in a variety of applications, by the way: dump trucks, refrigerated trucks and more. They’re all shaft-driven, and today they all use a diesel engine to power that shaft. That function could be powered by a battery in all these applications.

I know you spend a lot of time thinking about ways to be creative in terms of integrating these technologies into your business model. What have you learned from your EWIMS deployment?
When we first started looking at these vehicles, we were thinking about them in terms of payback period. So we did a standard analysis comparing current technology costs and fuel consumption to the cost of the new technology and projected fuel savings. But what we have learned is that the operating savings, improved relationship with our customers, the extended work day and the safety improvements dwarf the fuel savings. What we also learned is that, frankly, there is a lot that we as an industry can’t measure when evaluating these technologies with a standard approach to ROI or payback period. So PG&E treats each application as a unique situation and evaluates it individually. Let me also say that the economic impact of these vehicles extends beyond just PG&E. We just had the ribbon-cutting ceremony for a new facility here in Dixon, Calif., where Altec will be expanding its production capacity for these and other advanced vehicles. That’s 150 direct manufacturing jobs in the United States. And when you think about the multiplier for manufacturing jobs, which I think is about five times or six times, you are looking at almost 1,000 new jobs for the local community. That has an impact. Visit www.electrificationcoalition.org.

HYBRID VS. CONVENTIONAL 
“There has been no significant change in light-duty vehicles as a percentage of utility fleets,” said Tom Nimmo, a partner with the industry benchmarking firm Utilimarc. “However, we have seen changes within certain light-duty vehicle classes, including an increase in hybrids as a percentage of the fleet. Hybrid data also shows improved mpg and improved operating costs.”

Speaking at the 2012 Electric Utility Fleet Managers Conference (www.eufmc.com), Nimmo covered trends, using 2009, 2010 and 2011 data, at a select group of 41 utilities that field approximately 90,000 utility-specific vehicles. In 2012, the entire Utilimarc database, comprised of state, county, city, utility and private fleets, will track more than 300,000 vehicles. Visit www.utilimarc.com.

RALEIGH POLICE DEPARTMENT SEES SIGNIFICANT FUEL SAVINGS FROM MOBILE POWER IDLE REDUCTION SYSTEMS
Earlier this year, the Raleigh (N.C.) Police Department installed mobile power idle reduction systems in 29 police vehicles. The project was funded by an Energy Efficiency and Conservation Block Grant. Since being installed, the systems have saved Raleigh more than 3,000 gallons of fuel, cut emissions of 59,326 pounds of CO2 and reduced engine use by 107,032 miles. The police department now projects an annual fuel savings from the systems of $63,000.

The Energy Xtreme mobile power idle reduction system is a smart power management device that provides power, without engine engagement, to vehicles with demanding electrical needs. In Raleigh, the system allows police cruiser electrical systems, including lights, onboard cameras, computers and radios, to operate without having to idle the vehicle’s engine for at least four continuous hours. The system automatically recharges while the vehicle is being driven. Visit www.energyxtreme.net.

HYBRID NEWS

Eaton Supports California Hybrid Incentives
The California Hybrid and Zero-Emission Truck and Bus Voucher Incentive Project (HVIP) is getting a boost from Eaton Corporation (www.eaton.com/roadranger). Designed to assist California-based fleets with the purchase of low-emission, fuel-efficient medium- and heavy-duty hybrid vehicles, HVIP aims to help speed the introduction of hybrid trucks with financial incentives ranging from $10,000 to $45,000 for eligible vehicles.

“The Hybrid Truck and Bus Voucher Incentive Project offsets about half of the incremental cost of eligible hybrid vehicles,” said Gerard Devito, engineering director, Eaton hybrid power systems. “The program strongly benefits the public and commercial truck industry by helping interested fleets save money while delivering more sustainable transportation. We applaud the state of California for its pioneering work and many investments to promote and support the use of hybrid vehicles and other clean technology vehicles.”

About 87 truck and bus chassis configurations from a variety of vehicle manufacturers that are equipped with Eaton hybrid systems are eligible for the incentives. Under HVIP, incentives are preset for each qualified vehicle. Eaton hybrid power systems have collectively accumulated more than 300 million miles of service. More than 6,000 of Eaton’s hybrid systems are in use today on trucks and buses. Visit www.californiahvip.com.

ALTE LAUNCHES ELECTRIC VEHICLE FLEET PURCHASING SYSTEM
A Commitment to Action as part of the Clinton Global Initiative America designed to spur adoption of hybrid electric technology in fleets has been announced by ALTe Powertrain Technologies. The developer of a range-extended plug-in electric hybrid powertrain for light commercial fleet vehicles has pledged to develop a first-of-its-kind electric vehicle fleet purchasing system, under which fleet customers can consolidate the entire electric vehicle decision-making process in one web-based interface.

The new website, www.electrifyyourfleet.com, will connect corporate and government vehicle purchasers with electric vehicle stakeholders, including utilities, charging station providers and finance companies, and notify customers of available incentives while offering the benefits of group-rate purchases and simplifying the order-to-delivery process.

“Our commitment to the CGI community is to help solve the greatest roadblocks to commercial adoption of electric and plug-in hybrid vehicles: eliminating the lack of affordability and simplifying the EV and charging station order fulfillment process,” said ALTe chief executive John Thomas. “We intend to take a crowdsourcing approach to generate a new industry buying platform that helps fleets better transition to a cleaner operation, offer financial benefits to customers and grow new jobs for the future of America.”

As an electric powertrain systems provider, ALTe will offer certified full-sized pickups and vans that have been retrofitted with electric or plug-in hybrid powertrains. Designed to replace a V-8 internal combustion engine powertrain, the system’s patented technology improves fuel economy, the company said. Visit www.altept.com.

Green-Fleets-Web

Advanced Technology

It is a case of mutual interests combining resources and expertise, says Matt Gilliland, fleet services manager at Nebraska Public Power District (NPPD). “In 2006 to 2007, when Chevrolet was researching and developing the technology it would eventually use in the Chevrolet Volt,” he explained, “the OEM wanted to partner with utility fleets to deploy vehicles and evaluate their performance and function in actual operations.”

The result was an extensive program managed by the Electric Power Research Institute (EPRI), the nonprofit center for electricity and environmental research, that put demonstration Volt models on the road at 64 U.S. and Canadian utilities. For the three-year demonstration project, which officially began in 2011, NPPD is operating one of those vehicles.

NPPD supplies power in 91 of 93 Nebraska counties to communities as well as rural public power districts and electric cooperatives. Supporting its generation, transmission and distribution businesses is a fleet of 1,150 pieces of equipment ranging in size from ATVs to 140-ton cranes. Included are SUVs, pickups and vans, and a range of medium- and heavy-duty trucks.

The collaborative effort between EPRI, General Motors and NPPD is evaluating a 2011 Chevy Volt. The demonstration project will work to ensure safe and convenient electric vehicle charging, raise public awareness and understanding of plug-in electric vehicles, assist electric utilities in determining the support for charging vehicles and help public policy leaders better understand how electricity can be used as a vehicle fuel source. The program is made possible in part by a $30.5 million grant administered by the U.S. Department of Energy’s Recovery Act Transportation Electrification Initiative.

Equipped with a 120-kW electric motor that is equivalent to a 150-HP engine, the electric-powered, extended-range vehicle can travel approximately 35 miles on a full charge. After the battery is depleted, the onboard 80-HP gasoline engine and generator can power the Volt for an additional 372 miles for a total cruising range of 407 miles.

Working its way across Nebraska as a fleet vehicle, the Volt at NPPD is being used at 42 company locations in a variety of environments and under differing weather conditions. Data on the vehicle being supplied to EPRI will be included in aggregate results from all 64 utilities taking part in the project. In addition to performance information from onboard data capture devices, the utilities are helping determine charging and circuit-loading patterns and electric charging infrastructure readiness.

Behind NPPD’s participation in the demonstration project is the utility’s Domestic Energy Research and Application Initiative, which has funds for developing technologies related to environmental issues. “We’ve funded programs for energy research with the University of Nebraska, wind monitoring and carbon capture,” Gilliland noted, “so it made sense to leverage our resources to look into advanced vehicle technology as well. One of the benefits of this program was that by getting involved, we had access to some of the first Volts to come off the production line.

“One of the biggest benefits of the demonstration project,” Gilliland continued, “was that we formed a strong industry partnership where information flowed both ways. That will help us determine if this technology is right for our operation and our customers at the right cost.”

As for the Chevy Volt, Gilliland says it has done everything it was supposed to do. “It’s a great platform,” he stated. “This is one of the biggest advances in automotive technology in many years.”

HYBRID SOLUTIONS

Terex HyPower
The California Air Resources Board (CARB) has approved the Terex HyPower hybrid system for use in any power takeoff-equipped diesel-powered truck application with a gross vehicle weight rating (GVWR) of more than 10,000 pounds. This means the HyPower hybrid system meets the strict emissions requirements for anti-idling in the state of California, which many other states have adopted for fleets that are bidding on projects or requesting project funding.

CARB’s approval of the Terex HyPower hybrid system allows contractors and fleets to purchase new trucks with the system or retrofit older trucks. The Terex HyPower hybrid system enables job site operations without requiring the engine to be running, reducing harmful exhaust emissions and noise and lowering fuel use. According to Terex, the system can save up to 1,500 gallons of fuel per year based on 7,000 miles per year and 1,250 job site hours per year.

Visit www.terexhypower.com for more.

Altec
CARB has approved the Altec Jobsite Energy Management System (JEMS) when used in any power takeoff (PTO), diesel-fueled truck application with a GVWR of more than 10,000 pounds. Altec JEMS is a product of Altec’s Green Fleet, designed to eliminate engine idle time at the job site and reduce fuel consumption, noise and emissions. JEMS is an integrated plug-in system powered by application-specific battery packs. The system provides power for aerial devices, truck cab heating and air conditioning, and export power for hand tools and other electrical accessories.

Visit www.altec.com/green-fleet.php for more.

Eaton
Eaton Corporation has published a fact sheet on hybrid electric power systems for commercial trucks to help fleets determine whether the technology is the correct platform for their operations. The document covers applications, job site operation time, stop densities, vehicle speeds, driving techniques, warranty information and more. It also lists key specification information. More than 5,500 Eaton hybrid systems are in use today on utility vehicles and other commercial applications, and have collectively accumulated more than 200 million miles of service.

Visit www.roadranger.com for more.

Odyne Systems
Odyne Systems LLC has completed five plug-in hybrid vehicles funded by a U.S. Department of Energy development project and has delivered the vehicles to customers of DUECO Inc., the final stage truck manufacturer. Companies receiving the new technology include:
• Choptank Electric Cooperative, a Touchstone Energy Cooperative, which took delivery of a plug-in hybrid bucket truck with a Terex HR42M aerial device to be used in maintenance of electric lines;
• Consumers Energy, the principal subsidiary of CMS Energy, which took delivery of a plug-in hybrid utility truck with a Terex 5FC55 aerial device;
• NiSource, which took delivery of a plug-in hybrid bucket truck with a Terex TL41 aerial device for use in maintenance and construction of its electrical grid;
• NV Energy, which took delivery of an underground utility vehicle featuring a Vanair underdeck compressor for maintenance of an underground natural gas infrastructure; and
• Pepco Holdings Inc., which took delivery of a plug-in hybrid underground utility vehicle with a Vanair underdeck compressor for underground gas infrastructure maintenance.

Odyne has also delivered seven trucks featuring its plug-in hybrid propulsion system to utilities and municipalities throughout Wisconsin. Communities and utilities receiving the new technology were partially funded under the Wisconsin Clean Transportation Program jointly administered through the Wisconsin State Energy Office and the U.S. Department of Energy Wisconsin Clean Cities Program. The new units are anticipated to deliver 50 percent better fuel efficiency than a conventional truck annually, depending upon use.

Receiving vehicles with the Odyne hybrid systems is Milwaukee County, which took delivery of four work trucks that will be used to maintain traffic signals and street lighting. The vehicles feature the first Odyne hybrid systems installed on Kenworth truck chassis and are the first to power Venturo corner mount cranes. The trucks also have fiberglass bodies and Terex TL60 aerials.

Marshfield Utilities, serving the city of Marshfield, Wis., took delivery of a Navistar truck fitted with the Odyne system and a Terex HRX55 boom for use in construction and maintenance of the Marshfield utility grid. The Richland Center and Lake Mills units of Wisconsin Public Power Inc. will also be putting new Navistar chassis with Terex TCX60 booms and the Odyne hybrid system in service for the construction and maintenance of utility grids.

Odyne’s proprietary hybrid technology combines electric power conversion, power control and energy storage technology with Remy electric propulsion motors, modular Johnson Controls lithium-ion battery systems and other automotive components.

Visit www.odyne.com for more.

BAE Systems
The BAE Systems HybriDrive parallel system for Class 6, 7 and 8 vocational trucks is a scalable design that can be modified for a range of truck platforms, vocations and duty cycles. HybriDrive parallel is based on a motor/generator integrated between the engine and the transmission and an energy storage system, coupled with electronic controls. The system’s battery pack and electronics are sealed for under-vehicle environments.

Visit www.baesystems.com for more.

NATURAL GAS

Venchurs Vehicle Systems
Venchurs Vehicle Systems (VVS) is showcasing its new CNG and bi-fuel conversions for Ford F-250/350 trucks. The Venchurs CNG program includes dedicated CNG and bi-fuel systems that allow for seamless switching of the fuel supply and offer a range of up to 650 miles. VVS has built a CNG Search & Rescue Ford F-250 concept truck with its bi-fuel system for pilot program demonstrations by national park rangers. Each CNG conversion will be performed at the Venchurs’ conversion facility in Adrian, Mich.

Visit www.venchursvehicles.com for more.

Freightliner Custom Chassis
Freightliner Custom Chassis Corporation (FCCC), a subsidiary of Daimler Trucks North America LLC, has introduced its S2G chassis, a factory-installed liquid propane gas engine available in medium-duty trucks. The front-engine chassis utilizes a Freightliner M2 cab and has a GVWR of 33,000 pounds. Standard specs include an Allison 2300 automatic transmission with PTO provision.

The S2G’s 8-liter, 325-HP engine supplied by Powertrain Integration uses General Motors’ long block and other engine components. FCCC partnered with Powertrain Integration and CleanFUEL USA in the development of the S2G. A limited preproduction run of the S2G chassis is expected in the fourth quarter of 2012, with full production slated for the first quarter of 2013.

Visit www.freightlinerchassis.com for more.

Ram Truck
Ram Truck has introduced a factory-built CNG pickup. The Ram 2500 Heavy Duty CNG model is powered by the 5.7-liter Hemi V-8 and is equipped with both compressed natural gas tanks and an 8-gallon gasoline fuel tank. Canadian customers can opt for a 35-gallon gasoline tank. The CNG tanks provide a gasoline gallon equivalent of 18.2 gallons. If the CNG tanks are emptied, the vehicle will automatically switch to gasoline. CNG-only range is estimated to be 255 miles, while the backup supply of gasoline extends the range to 367 total miles.

The Ram 2500 CNG system uses a Hemi engine that has been modified to run on compressed natural gas as well as gasoline. Redesigned cylinder heads with specifically designed CNG-compatible valves and valve-seat materials allow the engine to burn both fuels. The engine also has a second, CNG-specific fuel rail and set of injectors, and a new powertrain control module that allows the Hemi to operate on either of the two fuel sources. In use the system is automatic. A small amount of gasoline is used during engine startup before the Ram CNG runs exclusively on compressed natural gas.

Visit www.ramtrucks.com for more.

General Motors
General Motors has announced details of its 2013 bi-fuel Chevrolet Silverado and GMC Sierra 2500HD extended cab pickup trucks. GM bi-fuel pickups are equipped with a CNG-capable Vortec 6.0L V-8 engine that transitions between CNG and gasoline fuel systems. Combined, the systems offer a range of more than 650 miles. The Silverado and Sierra will be available in standard and long box models, with either two- or four-wheel-drive systems.

Visit www.gmfleet.com for more.

Westport Innovations
Westport Innovations has announced that its Westport LD division’s WiNG Power System is being based on Ford’s new 6.2L hardened engine platform. Ford F-250 and F-350 pickups with the bi-fuel system run on natural gas or gasoline. WiNG Power Systems will be installed at the company’s manufacturing facility adjacent to the Ford Kentucky Truck Plant in Louisville.

Visit www.westport.com for more.

ELECTRIC

Motiv Power Systems
Motiv Power Systems has received a California Energy Commission grant of $1.16 million for an assembly line pilot run of four electric truck chassis in partnership with Detroit Chassis. The Motiv Electric Powertrain Control System (ePCS), which provides a 100-mile range, will be demonstrated in shuttle bus applications.

Motiv’s ePCS works with a wide range of batteries and motors. Through its intelligent software control algorithms, Motiv’s ePCS actively manages power flow between all electrical components in the vehicle. It also captures and wirelessly broadcasts data to the Motiv cloud for monitoring and analysis. Factors such as battery charge and vehicle status provide detailed real-time analytics to support fleet operators in preventive maintenance.

Visit www.motivps.com for more.

ALTe
ALTe Powertrain Technologies has installed its powertrain system in a second line of vehicles, the Ford Econoline E-350 platform. ALTe has already implemented conversions in Ford F-150 trucks. Road tests reveal that the E-350 cutaway chassis prototype can drive approximately 25 miles in an all-electric mode and then deliver nearly 15 mpg in a charge-sustained mode. These performance levels should continue to improve, ALTe noted, as it incorporates production level components and refines engineering algorithms. The company is delivering the E-350 prototype to its first potential fleet customer for evaluation and plans to build more prototypes for customer evaluations throughout the year. The company is targeting a spring 2013 product launch date for the U.S. market.

Visit www.altept.com for more.

Protean
Protean Electric is offering Protean Drive, an electric drive in-wheel motor system for existing light-duty vehicles. According to the company, the system can be easily integrated into a broad range of vehicles and can increase fuel economy by more than 30 percent depending on the size of the battery and the driving cycle.

Protean’s solution uses in-wheel motors that can deliver 81 kW (110 HP) and 590 pounds per feet, yet weigh only 68 pounds and are sized to fit within the space of a conventional 18- to 24-inch road wheel. Protean Drive regenerative braking capabilities allow up to 85 percent of the available kinetic energy to be recovered during braking. The system can be used on front-, rear- or four-wheel-drive vehicles that run on gas, diesel or other gaseous fuels such as CNG.

Visit www.proteanelectric.com for more.

VIA Motors
VIA Motors has announced it will collaborate with telecom provider Verizon to develop plug-in electric work vehicles using VIA’s proprietary extended-range electric vehicle (eREV) technology. eREV vehicles have up to 40 miles of all-electric range using lithium-ion batteries and the capability to drive unlimited additional miles using VIA’s onboard electric generator or range extender. In independent testing, VIA’s eREV pickup trucks have demonstrated up to 100 miles per gallon in typical fleet driving, according to the company. In addition, Verizon anticipates utilizing the onboard generator and power export option to power work tools or even provide power to its network in an emergency.

Visit www.viamotors.com for more.

ENGINES

Daimler Certifies Complete Vehicle Lineup
Daimler Trucks North America (DTNA) has announced that the U.S. Environmental Protection Agency (EPA) has certified its complete portfolio of model year 2013 on-highway, vocational and medium-duty vehicles as fully compliant with the new greenhouse gas 2014 (GHG14) regulations. DTNA’s GHG14 compliance has been achieved one full year ahead of the mandate for certification by the EPA and the U.S. Department of Transportation’s National Highway Traffic Safety Administration’s program to reduce heavy- and medium-duty truck greenhouse gas emissions.

Visit www.daimler-trucksnorthamerica.com for more.

Hino Trucks Honored at National Biodiesel Conference
Hino Trucks has been recognized by the National Biodiesel Board with the 2012 Eye on Biodiesel Impact Award. The company was nominated for the award for supporting the use of B20 biodiesel blends and for becoming the first manufacturer to support the use of B20 biodiesel blends in a hybrid-electric truck, as well as in its complete product line of Class 6 and 7 trucks.

All 2011 and later model conventional trucks powered by Hino’s proprietary J-Series engines are approved to use B20 biodiesel blends that contain biofuel blend stock (B100) compliant to ASTM D6751, and blended fuel compliant to ASTM D975. B20 biodiesel meeting these standards is also approved for use in Hino’s newly announced diesel and diesel-electric hybrid cabovers due to enter the market this summer.

Visit www.hino.com for more.

Green-Fleets-Smith-Electric-Web

Growing Interest

Featuring a larger expo hall where a wide range of vehicle systems in or nearing production for electric, plug-in hybrid, hybrid electric, hydraulic hybrid and work-site electrification were on display, the newly renamed Hybrid, Electric and Advanced Truck Users Forum (HTUF) held its annual meeting in Baltimore this past fall. The 2011 HTUF conference also had very significant participation from hybrid and electric truck manufacturers and suppliers, as well as fleets.

Utility Working Group
The HTUF Hybrid Utility Truck Working Group, consisting of more than 20 large fleets focusing on platforms for the utility industry and related uses, is now actively working on Class 4 and 5 applications and is reviewing plug-in hybrid requirements. This group is credited with fostering the launch of Class 6 and 7 commercial hybrid trucks from several manufacturers and has as parts of its current focus aerial lift trouble or “bucket” trucks in the medium- and heavy-duty weight range.

For the development of Class 4 and 5 hybrid work trucks, the working group is committed to developing preproduction vehicles for field evaluation. On its list of key performance parameters that will form the basis for vehicle specifications are:

• Reliability and durability that meet or exceed baseline vehicles
• Fuel economy improvement of 50 percent over baseline vehicles
• Payload loss of a maximum 500 pounds
• Engine-off power or idling for two to three hours at work sites
• Acceleration rate of a loaded unit that meets or exceeds baseline vehicles
• Startability of 15 percent at 20 mph
• Body and boom that are interchangeable with baseline trucks
• Gradeability of 15 to 30 percent at GVWR
• Top speed of 65 to 75 mph
• Fuel preference for diesel
• Engine-off electric drive or “Creep Mode” available up to 20 mph
• Variable shift points and RPM settings for different applications
• Exportable power of 3.5 kW single phase that meets industry standards
• Towing ability of 1,000 pounds
• In-cab display for driver feedback

Telecom Working Group
The HTUF Telecom Working Group released a request for information to OEMs and suppliers for Class 2 to 4 hybrid or ePTO trucks used in trouble response, spooling/splicing or light aerial applications. Respondents met with the working group at the recent conference and had the opportunity to ask direct questions of telecom companies. Vehicle specifications and key performance parameters are being refined and plans call for demonstration trucks to be available starting in late 2012.

HTUF is a national user-driven program to speed the commercialization of medium- and heavy-duty hybrid and high-efficiency technologies. It is operated by CALSTART in partnership with the U.S. Army’s National Automotive Center, with project support from the Hewlett Foundation and the Department of Energy. Visit www.htuf.org for more.

Electric Vehicles
CALSTART’s E-Truck Task Force (E-TTF) also met during the HTUF 2011 National Conference. The goal of the E-TTF is to speed and support effective electric truck production. The key recommendations of the task force are as follows:

• Call on industry to institute a battery-leasing model, link sales expansion to adequate parts and support networks, and increase quality control.
• Maintain or increase research and development for these technologies.
• Seek support incentives for incremental costs.
• Encourage fleets to require a service turnaround minimum before purchase.
• Create a commercial electric truck charge rate and eliminate/reduce demand charges.
• Create a clearinghouse for data-sharing on e-trucks.

To address the need for better guidance on building a business case for e-trucks, the task force developed an “E-Truck Business Case Calculator” that illustrates the best applications and ways to use an electric truck to recoup the initial purchase investment.

To help e-truck fleets understand their options, trade-offs and costs when setting up an EV charging infrastructure, the E-TTF created an infrastructure planning template based on fleet size. The template addresses power requirements, cost estimates, site considerations and availability of subsidies.

The E-TTF recommendations are now being used as an action plan for industry, fleet and policy activities. After receiving feedback on the E-TTF’s findings and proposed recommendations, CALSTART will publish this information. Visit www.calstart.org/Projects/E-Truck-Project.aspx for more.

EEI Guidebook
Edison Electric Institute (EEI) has released a guidebook to help utilities prepare for new electric cars and trucks. The report, “The Utility Guide to Plug-In Electric Vehicle Readiness,” acts as a road map for electric utilities to get the most benefit from this innovative technology.

The EEI guide focuses on the four areas that every electric utility will need to address to make sure they are ready for plug-in electric vehicles (PEVs) to plug into their service area:

• Getting the utility up to speed – The structure and organizational changes that a utility will need to address, as well as the value of adding PEVs to their fleets.
Enhancing the customer experience – The educational topics and communication channels that will help utilities get their PEV-owning customers up to speed.
• Key passengers to include – The guide offers advice on engaging key third parties such as state regulators; federal, state and local governments; and additional stakeholder collaborations.
• Plugging into the grid – This section looks at how much power PEVs use, ensuring grid and distribution system readiness; helping customers plug in; and streamlining the charging station installation process.

To download a copy, visit www.eei.org/newsroom/energynews/Pages/20111115.aspx.

Smith Electric Vehicles Expands Production
Smith Electric Vehicles Corp. has announced it will expand its U.S. operations in 2012 by adding a manufacturing facility in New York to build the zero-emission Newton, its all-electric medium-duty vehicle.

The Newton is offered as a chassis cab that can be configured for use in utility operations. The vehicle is offered in a GVW range from 16,500 to 26,400 pounds and in 154-, 177- and 201-inch wheelbases. The Newton has a range of up to 150 miles.

The new facility, Smith’s second U.S. manufacturing, sales and service center, will join existing operations in Kansas City, Mo. The first Newton vehicles are planned for production in New York in the second half of 2012. Smith’s investment in its new plant is being augmented by city and state incentives of approximately $11 million.

New York Governor Andrew Cuomo has also announced the development of a federally funded, multiyear commercial electric vehicle buyer incentive program to accelerate adoption and allow for fleet conversion throughout New York. The New York State Department of Transportation has committed $10 million in federal Congestion Mitigation and Air Quality funding for the first year, which will be offered in the form of vouchers of up to $20,000 per vehicle. The program will be managed by the New York State Energy Research and Development Authority, and will offer voucher incentives to the purchasers of any qualified all-electric vehicle over 10,000 pounds GVW regardless of manufacturer. Visit www.smithelectric.com for more.

Protean Electric Projects Retrofit Market Growth
An all-new retrofit market will grow to a half-million vehicles by 2020, according to Protean Electric, which has developed an in-wheel motor electric drive system for light-duty vehicles. “Rising operating costs, shrinking budgets and green mandates are hard to balance when your fleet still has a job to do every day,” said Ken Stewart, Protean’s vice president of sales and marketing. “The time is right for a system that can add the benefits of this technology to light-duty vehicles that are already in service.”

The vast majority of this new retrofit market will come from converting light-duty government and commercial fleets. The Protean Drive in-wheel solution, which can be integrated into a broad range of vehicles, uses motors that can be fitted to conventional rear axles and installed in the space behind a wheel to produce up to 110 HP. Each motor has its own self-contained inverter controller. Visit www.proteanelectric.com for more.

PG&E Helps Unveil VIA Motors eREV
Pacific Gas and Electric Company joined VIA Motors in unveiling the first extended-range electric pickup truck for utilities. The utility partnered with VIA in 2008 to develop the trucks, called extended-range electric vehicles or eREVs, and already operates two of the trucks.

The VIA Motors eREV powertrain, powered by Symetron SmartDrive, was designed to work in light-duty trucks from GM, Ford and Dodge. An extended-range electric work truck comes with an optional onboard inverter that can be used in place of a tow-behind generator. The eREV trucks run the first 40 miles solely on electricity before switching to gasoline. For electric utilities, the trucks potentially can provide on-site power using a 15 kW capacity inverter.

In addition to the full-size pickup, VIA will offer a four-wheel drive SUV and a three-quarter-ton cargo van. The company has begun taking orders for its extended range electric pickup. Production is scheduled to begin in 2012. Visit www.viamotors.com for more.

Freightliner Custom Chassis Corporation and Enova Partner to Unveil Green for Free Program
Freightliner Custom Chassis Corporation (FCCC) and Enova, a developer of hybrid-electric and all-electric drive systems and drive system components, have launched a program to make electric vehicles more accessible to fleets.

The Green for Free program allows fleets to purchase all-electric vehicles for the cost of a diesel-powered commercial vehicle. The savings fleets incur from the reduced maintenance and fuel savings of the electric vehicles are then used over a period of time to cover the incremental expense of the technology. FCCC and Enova plan to deploy a total of 3,000 alternative-fuel vehicles within a two-year time frame beginning no later than the third quarter of 2012 as a result of the Green for Free program.

The Green for Free program will utilize the FCCC All-Electric Walk-in Van chassis powered by the Enova drive system. Enova and FCCC developed an integration method for both new and retrofit applications. FCCC’s all-electric chassis is built upon the FCCC MT-45 chassis with a GVWR of 14,000 to 19,500 pounds. Visit www.freightlinerchassis.com and www.enovasystems.com for more.

Propane
Trucks fueled by propane autogas, coupled with the cleaner-burning properties of propane, can decrease maintenance costs and extend engine life, according to the Propane Education & Research Council. Vehicles fueled by propane autogas, the most widely used alternative fuel, emit up to 12 percent less carbon dioxide, about 20 percent less nitrogen oxide and up to 60 percent less carbon monoxide than gasoline‐powered vehicles. More than 270,000 vehicles in the United States run on propane autogas, according to the U.S. Department of Energy.

Light- and medium-duty trucks fueled by propane autogas are available from industry-leading manufacturers, including Ford Motor Company, through collaboration with ROUSH CleanTech and General Motors, and through collaboration with CleanFUEL USA. The North American market for vehicles fueled by propane autogas is gaining momentum as more fleet managers become aware of the environmental and economic advantages.

Southern California’s City of Cypress is using ROUSH CleanTech propane autogas vehicles. The city added two Ford F-250 pickups fueled by the alternative fuel. “The City of Cypress is always looking for opportunities to put green vehicles in our fleet, and it’s important to move toward greener fleets when possible,” said Doug Dancs, the city’s director of public works. “Plus, the choice for propane was an easy one since we have had a propane fueling station in place since the early 1980s.”

King County, Wash., is also using vehicles that operate on propane autogas. Its fleet now includes seven Ford F-250s, one Ford F-350 extended cab pickup and one Ford E-250 cargo van with ROUSH CleanTech systems. “Public fleets in particular have a responsibility to take the lead and take steps to achieve significant greenhouse gas reductions within their own fleets,” said Robert Toppen, King County Department of Transportation equipment supervisor.

Visit www.autogasusa.org, www.roushcleantech.com and www.cleanfuelusa.com for more.

Compressed Natural Gas
Compressed natural gas (CNG) is an abundant domestic alternative fuel that offers significant advantages over gasoline. CNG’s per-gallon equivalent is 30 percent less expensive. In many areas of the country there is already infrastructure in place to effectively operate natural gas vehicles and more public-access fueling stations are becoming available. Another major advantage of CNG is 25 percent fewer CO2 emissions than standard gasoline-powered engines.

Strategic Partnership to Produce Natural Gas Vehicles
Leggett & Platt Commercial Vehicle Products (L&P CVP) has partnered with Landi Renzo USA to implement alternative fuel systems using CNG. L&P CVP will install Landi Renzo’s CNG fuel system at its Ford ship-thru facility in Elyria, Ohio, and will offer three- and four-tank options for installation on Ford’s E-250 and E-350 Cargo and Passenger vans. The 21 and 27 gasoline-gallon-equivalent tanks are part of a system that complies with Federal Motor Vehicles Safety Standards and Regulations, is certified by the EPA and is 50-state compliant through CARB. Visit www.leggettcvp.com and www.landiusa.com for more.

IMPCO Receives CARB Certification
IMPCO Automotive, a business unit of Fuel System Solutions Inc., has received certification by the California Air Resources Board (CARB) for its CNG fuel systems on several Ford and General Motors vehicles. Included are:

• Ford E-150/250 and 250 Econoline vans with the 5.4-liter V8 engines
• Ford E-450 Econoline cutaway cab chassis with the 6.8-liter 2v V8 engines
• Ford F-450/550 Super Duty trucks with the 6.8-liter 3v V8 engines
• General Motors 2500/3500 Express/Savana vans with the 4.8-liter and 6.0-liter V8 engines
• General Motors 4.8-liter V8 engine for heavy-duty applications – 10,001 to 14,000 pounds GVW
• General Motors 6.0-liter V8 engine for heavy-duty applications over 14,000 pounds GVW

Achieving CARB certification is especially important because several states have either adopted or are in the process of adopting California’s strict emissions standards. These states include New York, New Jersey, Massachusetts, Maine, Connecticut, Rhode Island, Pennsylvania, Vermont, New Mexico, Oregon, Washington, Maryland and Florida. IMPCO previously received certification from the U.S. Environmental Protection Agency (EPA) for these vehicles.

Now fielding IMPCO-powered vehicles is the City of Chicago, which has ordered up to 40 CNG-powered Chevrolet Express vans and as many as 40 CNG-powered Chevrolet Silverado pickup trucks. The dedicated CNG fuel systems will be installed on the Chevrolet Express vans at IMPCO Automotive’s alternative fuels conversion plant in Union City, Ind. The fuel systems for the trucks will be installed by IMPCO Automotive’s certified installation partner, Auto Truck Group, in Bartlett, Ill. Visit www.impcoautomotive.com for more.

Daimler Trucks North America Produces 1,000th Natural Gas Truck
Daimler Trucks North America, parent company of Freightliner Trucks, turned over the key to its 1,000th natural gas truck. Freightliner’s natural gas vehicles, including the M2 112 and 114SD, are powered by the Cummins Westport ISL G 8.9-liter engine, the only factory-built, dedicated natural gas engine available in the commercial vehicle market. These factory-installed and warranty-covered CNG tanks come in 60 diesel gallon equivalent (DGE) and 75 DGE configurations.

Freightliner Trucks has also announced that DeKalb County, Ga., has ordered 24 Freightliner Business Class M2 112 CNG trucks. DeKalb County will power the new trucks using its methane gas-to-energy process. The program, which was launched in 2011, converts landfill waste to useable natural gas. By converting the waste to energy, DeKalb County produces enough electricity to run 2,500 homes and will produce enough natural gas to run 600 trucks. To support the gas-to-energy program, DeKalb County is also building two fueling stations. Visit www.freightlinertrucks.com for more.

Hybrids

Hybrid Systems Achieve 200 Million Miles of Service
Eaton Corporation has announced that that customers of its hybrid systems have collectively accumulated more than 200 million miles of service, reducing diesel fuel consumption by 8 million gallons and harmful emissions by 80,000 metric tons. More than 5,500 of Eaton’s hybrid systems are in use today worldwide on trucks and buses. In addition to hybrid electric systems, Eaton began commercial production of its hybrid hydraulic system known as Eaton Hydraulic Launch Assist or Eaton HLA in the fall of 2010.

Eaton has also announced a program that lowers the service replacement cost for its hybrid power systems electronics carriers (PECs) and said it will offer two auxiliary power generator (APG) options for its hybrid electric power systems.

“We are now entering the period when the early adopters of hybrid technology are beginning to require service of the hybrid power batteries outside the factory warranty period,” said Gerard Devito, director of engineering, Eaton Hybrid Power Systems Division. “We are committed to helping fleets receive real value in running cleaner, greener fleets by continuing to lower the overall cost of ownership for hybrid systems and provide a positive return on investment.”

The new program significantly lowers the purchase price of PECs by up to half for utility applications. A standard aftermarket warranty of one year on parts and labor applies, with a two-year extended protection plan available at an additional cost. Starting in October 2011, the program became available through dealerships that elect to participate in this program and are authorized to service Eaton Hybrid Power Systems.

In addition to the PEC service replacement program, Eaton has announced it will offer two APG options in 2012 that will allow fleets to run vital equipment from the vehicle without requiring the engine to idle for power generation. The APG options will meet the power needs for customers using 115-volt single-phase tools and 208-volt three-phase loads. Visit www.eaton.com/hybrid for more.

BAE Unveils Scalable Hybrid Solution
The new BAE Systems HybriDrive family of heavy-duty hybrid electric propulsion systems is scalable to meet a wide range of truck platforms, vocations and duty cycles, including those for hybrid utility trucks. HybriDrive Parallel is based on a single electric machine integrated with the engine and the transmission on medium- to heavy-duty trucks.
www.baesystems.com

International DuraStar
The International DuraStar Hybrid, a diesel hybrid electric medium-duty truck is available with a choice of engines. Included are the MaxxForce 7 in ratings from 220 to 300 HP and 560 to 660 lbs./ft. of torque; the MaxxForce DT with automatic and manual driveline options and eight ratings from 215 to 300 HP and 560 to 860 lbs./ft. of torque; and the MaxxForce 9, also with a full range of automatic and manual driveline options and ratings up to 350 HP.

International’s hybrid vehicle is also equipped with the company’s Diamond Logic Electrical System, which integrates body equipment and the hybrid powertrain as a single piece of equipment. The programmable system features self-calibrating gauges that provide an audible alarm and visible LED indication when displaying a value out of normal operating range. Onboard diagnostics monitor electrical modules and capture diagnostic faults, and trouble codes are stored and displayed on the instrument panel’s built-in LCD screen. The International DuraStar Hybrid can also be equipped with the OEM’s AWARE vehicle intelligence system to allow for real-time data collection, reporting and analysis. Visit www.internationaltrucks.com for more.

XL Hybrids Conversion Systems
A hybrid conversion that transforms new or existing Class 1 through 3 vehicles into hybrid electric units is being readied for sale in 2012 by XL Hybrids. Designed for cargo, utility and shuttle vans and pickup trucks, the system has been undergoing pilot trials with select customers. XL Hybrids adds an electric motor, a lithium-ion battery pack and control software to the vehicle without making significant modifications to the engine or transmission. The parallel hybrid system can be installed as a retrofit on existing vehicles through a network of installation partners or as an upfit onto a new vehicle before delivery from a dealer. Visit www.xlhybrids.com for more.

peterbilt-hybrid

Green Fleets

Around the Industry
The National Clean Fleets Partnership, a Department of Energy (DOE) initiative, has set its sights on helping companies reduce diesel and gasoline use in their fleets by incorporating electric vehicles, alternative fuels and other fuel-saving measures into their daily operations. Through the partnership, the DOE will assist in efforts to reduce fuel use and achieve greater efficiency and cost savings by offering specialized resources, technical expertise and support.

Part of the DOE Vehicle Technology Program’s “Clean Cities” initiative, the National Clean Fleets Partnership includes opportunities for technical assistance and collaboration, such as peer-to-peer information exchange, and access to expertise at DOE and national laboratories where related research and development initiatives are underway. Also possible is assistance in pursuing group purchasing so smaller companies realize the benefits of purchasing advanced technology vehicles.

The DOE has developed a wide range of technical tools to help companies navigate the world of alternative fuels and advanced vehicles. The collection includes cost calculators, interactive maps, customizable database searches, mobile applications and other vital information.

Utilimarc and CALSTART have joined forces to provide fleets with a range of valuable resources and experience about light- and medium-duty vehicles powered by alternative fuel. CALSTART, which is known for its Hybrid Truck Users Forum (HTUF), brings to bear its expertise to guide fleets in selecting and implementing new technology and measuring its benefits. Utilimarc’s benchmarking data plays a critical role in assessment, monitoring and ROI calculation, ensuring a reliable comparison of industry-specific metrics with an emphasis on tracking alternative fuel vehicles.

Regulations mandating environmental protection practices are requiring fleet managers to implement new programs. These rules, which cover a wide variety of topics, include the following:
• U.S. Environmental Protection Agency (EPA) rules covering hazardous wastes defined and regulated by the Resource Conservation and Recovery Act, known as RCRA (“Rick-Rah”), including recycling and pollution prevention options
• Federal underground storage tank (UST) regulations and state UST programs approved by the EPA that are allowed to operate in lieu of the federal program and may have more stringent regulations than the federal requirements
• Safe fuel-handling regulations designed to prevent accidental spills and overfills
• RCRA, Clean Water Act and Clean Air Act requirements that may pertain to vehicle painting
• Refrigeration service activities regulated under the Clean Air Act
• Regulatory requirements for pollutant discharge and storm water runoff systems
• Requirements for hazmat incident reporting

GreenTruck (www.greentruck.com), a consolidated source of information about environmental regulations, is provided by American Trucking Associations and the Transportation Environmental Resource Center. The site details EPA programs for oil spill prevention and response, and hazmat incident reporting. Also covered are federal and state underground storage tank (UST) regulations, safe fuel-handling regulations, hazardous waste definitions, refrigeration service activities regulated under the Clean Air Act and requirements that may pertain to vehicle painting. GreenTruck also provides details on the EPA’s National Environmental Performance Track program, which rewards companies that exceed minimum regulatory requirements and take extra steps to reduce and prevent pollution.

On the Road
Fleet managers continue to learn more about alternative fuel-powered vehicles. During the 2010 Electric Utility Fleet Managers Conference (EUFMC), three executives described their experiences.

Duke Energy has been operating groups of 2006- and 2009-model hybrid trucks, reported Mike Allison, director of fleet design and technical support. The hybrids and baseline vehicles in the fleet were fitted with data capture systems to compare operating information. “For the most closely matched vehicles, both driven approximately 22,000 miles,” he said, “we learned that the hybrid unit used 25 percent less fuel and accumulated 800 fewer engine hours. Overall, fuel economy was 6.83 mpg for the hybrid versus 5.60 mpg for the diesel-powered model.

“Initial acceptance by operators was also good,” Allison added, “and we found that savings were application-driven. Also, while we did have some performance complaints, those were corrected through software changes.”

Florida Power & Light also reported “strong user acceptance” for the initial 24 Class 6-7 hybrid trucks in its operation. At the time, the fleet had 36 months of service on its first hybrid units and more than 1 million miles of combined road service on the group of trucks. “At over 99 percent, availability of the hybrid trucks has been high,” said Claude Masters, manager, vehicle acquisition and fuel. “In addition, the hybrid trucks showed fuel savings of 32 to 47 percent [measured in gallons per hour].

“Factors affecting fuel economy include highway driving conditions and engine-off PTO operation,” Masters also reported. “Realizing efficiencies with hybrid vehicles comes from matching the equipment to the mission.”

Pacific Gas and Electric Company is also a user of alternative power trucks. “Making effective choices,” noted Dave Meisel, director, transportation services, “is about looking at the highest value proposition elements, and because fuel savings are very duty-cycle dependent, no one type of alternative fuel vehicle fits all applications. In addition, there are price and return-on-investment questions that need to be asked and answered because performance varies significantly between makes, models and manufacturers.”

Meisel also defined two other issues to address when considering alternative vehicles. Included were employee challenges, such as familiarity with the operation of the equipment and the availability of qualified technicians. Also to be considered are parts availability
and technical issues related to batteries and charging systems.

Today’s natural gas trucks are ready to handle utility tasks, said Dave Bryant, manager, vocational sales at Daimler Trucks North America (DTNA), during the 2010 EUFMC. DTNA, he noted, has put more than 2,000 natural gas units into service in a range of applications, including utility, municipal and construction fleets.

DTNA’s factory-installed natural gas solution for the Freightliner M2 112 platform features the Cummins Westport ISL G 8 engine. The five models offered in liquefied natural gas (LNG) or compressed natural gas (CNG) versions include 250, 260, 280, 300 and 320 HP options with peak torque from 660 to 1,000 lbs./ft. at 1,300 rpm. For its M2 natural gas models, the OEM offers CNG tanks in 60 diesel gallon equivalent (DGE) and 75 DGE configurations. Factory-installed LNG options include 119- and 147-gallon tanks, which equate to 65 and 86 DGE, respectively.

All Freightliner natural gas vehicles include a standard methane detection system. The system encompasses sensors mounted in the cab, engine compartment and outside the cab near the fuel tank to provide visual and audible warnings of fuel leaks. Freightliner and Cummins Westport also provide on-site fleet customer training, as well as engine and fuel system maintenance and troubleshooting services.

Bryant pointed out several benefits of natural gas engines beyond lower operating costs than diesel. “With the same rated speed as an ISL diesel, the ISL G provides 30 percent more torque at idle, and it is quieter,” he said. “Other advantages include a maintenance-free three-way catalyst and no need for additional emissions control devices, diesel particulate filter regeneration or ash cleaning.

“When you look at fuel choices, natural gas is a great choice to meet short-haul and vocational needs,” Bryant said. “It is less expensive than diesel fuel, and NG-powered engines have a lower cost of operation than their diesel counterparts.”

Liquid propane autogas, another viable alternative for fleet vehicles, took center stage at the 2011 National Truck Equipment Association’s Work Truck Show. There, ROUSH CleanTech announced its new 6.8-liter V10 propane autogas-powered Ford F-550 super duty chassis cab. The propane autogas fuel system will be available for 2012 and later models of the Ford F-450 and F-550 truck series, and is expected to ship beginning in October 2011.

The fuel system is currently in development and will be EPA and California Air Resources
Board (CARB) certified at launch. The system will be available as a Ford ship-through option for installation on new vehicles, or as a retrofit option for vehicles already in service.

While ROUSH CleanTech is still finalizing the details on tank capacity and options, the plan is to offer up to three tank configurations for the Ford F-450 and F-550 propane autogas fuel system – an in-bed tank and two under-bed tanks. The fuel tank choices will be able to be combined to conform to various body configurations and to meet the range requirements of customers. The system, equipped with a five-speed automatic transmission, will work on all cab and wheelbase configurations, as well as 4×2 or 4×4 vehicles.

“Going green is not just for light-duty vehicles anymore,” said Joe Thompson, president of ROUSH CleanTech. “Propane autogas offers so many benefits to fleets in terms of safety, economics, environmental soundness and convenience. There are thousands of refueling stations across the U.S., and many fleets are installing low-cost on-site refueling infrastructure to eliminate the need for off-site stations.”

Propane autogas burns cleaner than gasoline or diesel, with 20 percent less nitrogen oxide, up to 60 percent less carbon monoxide, 17 to 24 percent fewer greenhouse gas emissions and fewer particulate emissions when compared to gasoline. When compared to diesel fuel, the emissions reductions are even greater. Propane autogas also offers up to 40 percent reduction in fuel costs when compared to gasoline.

In the Shop
Southern California Edison (SCE) has been honored for green shop efforts at its Wildomar, Calif. facility, achieving Platinum certification under the Leadership in Energy and Environmental Design (LEED) program sponsored by the U.S. Green Building Council (USGBC). The USGBC process includes a green building rating system covering Sustainable Sites, Water Efficiency, Energy & Atmosphere, Materials & Resources, Indoor Environmental Quality and Innovation in Design.

During the 2010 EUFMC, James Kennedy, manager, presented details on SCE’s Greening Utility Fleet Garage Facilities activities. The Wildomar service center site is home to a
21,116-square-foot, two-story garage with six truck bays, a welding bay and a wash bay, along with an office building, an assembly space and a yard management warehouse.

“In the shop we focused on environmentally-sensitive planning, design and construction,”
Kennedy said. “For example, skylights and glass bay doors in the garage were placed to optimize the use of natural light. Also used were low volatile organic compound-emitting, nontoxic paints, coatings, adhesives, carpets and floor coverings to promote high indoor air quality. In addition, the building has an HVAC system with CO2 monitoring devices and HEPA filters to regulate fresh-air ventilation when indoor CO2 levels reach a predetermined threshold.”

Kennedy went on to say that the Wildomar service center is a model for new building construction at SCE. “We’re committed to environmental protection,” he stated. “Beyond meeting regulatory requirements, we’re developing and implementing programs and practices that improve air and water quality, reduce solid waste and conserve natural resources. In addition, we’re benefiting by reducing operating costs and by providing a healthier, more comfortable work environment for our employees.”

SCE also earned LEED credits for its green building education practices by providing public information on the sustainable features of the Wildomar facility. The utility has also been awarded credits for its green housekeeping program that promotes the use of nontoxic cleaning supplies, for achieving water savings through the use of high-efficiency plumbing and landscaping fixtures, and for the purchase of renewable energy credits to offset the facility’s energy usage.

SCE, one of the nation’s largest electric utilities, operates 1,900 medium-duty trucks and 3,000 passenger and light-duty vehicles, along with 1,000 heavy-duty units and 1,100 pieces of equipment. The fleet is maintained in 44 shops staffed by 246 technicians.

  • 1
  • 2
Utility Fleet Professional

360 Memorial Drive, Suite 10, Crystal Lake, IL 60014 | 815.459.1796

KNOWLEDGE, INSIGHT & STRATEGY FOR UTILITY FLEET LEADERS

Utility Fleet Professional is produced by Utility Business Media, Inc.   View Capabilities Statement

Get the Utility Fleet Professional Digital Edition App
Get the Utility Fleet Professional Digital Edition App

Get the iP Digital Edition App


© All rights reserved.
Back to Top