Tag: Current

The Skinny on Confined Spaces

Author’s Note: Yes, this is a fleet-oriented magazine, so you might ask why this issue includes this article on confined spaces. Well, I’m glad you asked. All utility employees, including fleet employees, are required to have the skills to recognize a confined space and the hazards in the confined space, and they must also know how to protect themselves from confined space hazards. As you read through this article, you will note the descriptions and characteristics of a confined space, and you may find that some fleet-related spaces do qualify as confined and have the same hazards as a plain old manhole. It doesn’t matter who you work for or what you do, a confined space represents risks that will kill if you don’t recognize them.

There are rules in our industry. We, as utility or utility contractor employers, must follow the rules for two reasons. The first reason is that, if we don’t follow the rules, we get into trouble with the regulatory authorities. The second and more important reason is that the rules are in place to protect employees from injury or death. So it is with confined spaces. Confined spaces can and have killed workers.


Confined space is a confusing issue among many of our colleagues and one I get questions about all the time. In fact, a recent inquiry about confined spaces in wind spurred this article. We will first look at the classification of the spaces we work in so that you start from the right perspective as you try to comply with the rules and effectively protect your workers without going way beyond what’s required. Then we will look at how to practically apply the rules in our workplaces.

The Statistics
According to the U.S. Bureau of Labor Statistics’ Census of Fatal Occupational Injuries, manholes and vaults are the third most frequent locations for confined space deaths. The most common sources of fatal exposure are naturally occurring hydrogen sulfide, carbon monoxide and naturally occurring methane. Trench collapses killed 168 workers in 2020, the year of the most recent census report. Yes, trenches can be confined spaces.

Looking at the exposure statistics should get our attention. Those spaces are where we work. And we have another emerging confined space issue related to wind generation. There are no census reports yet because wind turbine maintenance is just getting into swing as turbines age and maintenance intervals increase, but we know injuries and fatalities are increasing, too.

OSHA requires every employer to examine their workplace for confined space hazards and develop a plan for worker protection.

The utility industry has a special classification known as an “enclosed space.” For all practical purposes, we have two classifications: permit-required confined space and enclosed space. Let’s start with some definitions. Permit-required confined space regulations are found at 29 CFR 1910.146 (Subpart J) and 1926 Subpart AA. Enclosed space standards are found at 1910.269(e) and 1910.269(t). You must be familiar with 1926 Subpart AA and 1910.146 so that you clearly know what a permit-required space is and when a location is considered one (more on that in a bit). Your utility’s enclosed space program and training must be based on 1910.269(e) and 1910.269(t). So, now let’s look at how all this fits together for practical application and keeping your workers safe.

Understanding Definitions
First, we need to understand the definitions of the spaces we work in. For those, we go right to the definitions in the OSHA standard for permit-required confined spaces in 1910.146. We must also go to the end of 1910.269, where we will find the definitions for keywords used in the 1910.269 standard. Each definition from the standard is followed by an explanation.

“Confined space” means a space that:

  1. Is large enough and so configured that an employee can bodily enter and perform assigned work; and
  2. Has limited or restricted means for entry or exit (e.g., tanks, vessels, silos, storage bins, hoppers, vaults and pits are spaces that may have limited means of entry); and
  3. Is not designed for continuous employee occupancy.

Explanation: This definition does not cover electrical manholes, vaults or wind towers. First, all three defining characteristics must be present. While condition 1 might be construed as a manhole, walk-in vault or subterranean electrical vault, that assumption is clarified by conditions 2 and 3. Condition 2 uses examples to help readers understand the term “restricted means for entry.” These restricted means are typically flanges or plates fastened in place with several bolts, meaning it takes a very purposeful act to try to enter the space. You can also surmise from this description the types of facilities these spaces are in. Condition 3 further clarifies the space as “not designed for continuous employee occupancy.” The word “designed” means that the entryways are engineered for access with space and hardware to facilitate frequent and relatively convenient access. Inside the space is appropriate room for maneuvering, walkways, walking grates, handholds, covers for hazardous equipment, lighting and/or ventilation. “Continuous employee occupancy” means that it is expected and common for employees to routinely enter the space for operation, maintenance or inspection.

“Non-permit confined space” means a confined space that meets the definition of a confined space but does not meet the four conditions (see below) of a permit-required confined space.

Explanation: The purpose of this definition and the way it is written have to do with mitigating any of the four hazards that make a space a permit space. This practice is known as reclassifying a permit space. If you have a permit space, but you mitigate or control the four hazards called out in the definition for a permit-required confined space, that space is now a confined space, recognizing that if any of the mitigated hazards reoccur, that space is instantly now a permit space. Following are the four conditions that make a confined space a permit space.

A “permit-required confined space” means a confined space that has one or more of the following characteristics:
Contains or has the potential to contain a hazardous atmosphere.
Contains a material that has the potential for engulfing an entrant.
Has an internal configuration such that an entrant could be trapped or asphyxiated by inwardly converging walls or by a floor that slopes downward and tapers to a smaller cross-section.
Contains any other recognized serious safety or health hazard.

Explanation: Characteristic 1 is frequently cited as justification for making a manhole a confined or permit space. The reasoning is that, should a fire occur, a hazardous atmosphere would exist. The assumption is true – a hazardous atmosphere would exist – but it does not apply to manholes or vaults. This definition is about confined spaces that are classified as permit spaces. A manhole or an electrical vault does not meet the configuration for a confined space established in the definitions, so this characteristic is not associated with electrical manholes or vaults. This definition also exempts wind towers for the same reason. Characteristic 2 refers to flowing materials, such as water, or flowable solids, such as seed. Characteristic 3 refers to bottom-dispensing hoppers or storage bins. Sloping walls do not relate to manholes, electrical vaults or wind towers. Characteristic 4 is also used to include manholes because electricity is hazardous, and vaults or manholes can contain hydrogen sulfide or carbon monoxide. While this is true, as is the case in characteristic 1, these electrical spaces don’t meet the configuration requirements of a confined space.

So, a confined space has to do with shape and access, while a permit-required confined space has to do with the hazards within the confined space.

An “enclosed space” is defined as a working space – such as a manhole, vault, tunnel or shaft – that has a limited (different from “restricted” in confined space) means of egress or entry; that is designed for periodic employee entry under normal operating conditions; and that, under normal conditions, does not contain a hazardous atmosphere, but may contain a hazardous atmosphere under abnormal conditions.

Note to the definition of “enclosed space”: OSHA does not consider spaces that are enclosed but not designed for employee entry under normal operating conditions to be enclosed spaces for the purposes of this section. Similarly, OSHA does not consider spaces that are enclosed and that are expected to contain a hazardous atmosphere to be enclosed spaces for the purposes of this section. Such spaces meet the definition of permit spaces in 1910.146, and entry into them must conform to that standard.

Explanation: Now we get to the space particularly defined for the electric utility industry, the enclosed space. Rule 1910.269(e), “Enclosed spaces,” explains that the enclosed space classification is in lieu of the permit-space entry requirements contained in 1910.146. This rule further requires that if, after the employer takes the precautions required by paragraphs (e) and (t) of 1910.269, the hazards in the enclosed space endanger the life of an entrant or could interfere with an entrant’s escape from the space, then entry into the enclosed space shall meet the permit-space entry requirements of 1910.146. This is a very important rule because it clarifies that 1910.269(e) does not stand alone as work rules for manholes and vaults. Section (t), “Underground electrical installations,” is part of the requirements for the protection of workers in enclosed spaces. You must be familiar with and follow both to get it right.

Another Look
Let’s look again at the definition for “enclosed space,” particularly the note to the definition. In simple terms, the note shares two important perspectives from which we interpret the rules of 1910.269(t). First, if it is designed for employee entry, it is not a permit space. Second, if the space is expected to contain a hazardous atmosphere, it is not an enclosed space. Again, this is important in defining an enclosed space, particularly when dealing with basements of wind towers or the nacelle. In a normally operating system, the presence of oil, hydraulics, or electrical equipment and cables is not considered a hazardous atmosphere or other hazard. This is a key issue for manholes and electrical vaults, especially regarding rescue, and here is why.

Remember, a manhole is covered by both 1910.269(e) and (t). Part (t) requires a first-aid-trained attendant on the surface if the manhole has energized cables or equipment. Part (t) also allows the attendant to enter the manhole for short periods to provide non-emergency assistance. Part (e) requires an attendant as well. The part (e) enclosed space attendant must be first-aid trained and is not permitted to enter the space to assist workers inside. In fact, the rule uses the phrase “immediately available outside the enclosed space,” and those duties performed by the attendant must not distract the attendant from monitoring employees within the space or ensuring that it is safe for employees to enter and exit the space. So, why the difference? It is explained in the preamble. Part (t) specifies that the hazard is “electrical contact” to the exclusion of all other hazards. Part (e) includes other hazards such as gases, water and fires/explosions. Where the only hazard has been determined to be contact with an exposed electrical hazard, an attendant can briefly enter the space.

The Bottom Line
The bottom line on rescue from a manhole, vault or wind enclosed space is this: OSHA makes it clear in the preamble to 1910.269 that the intention is to have a space for the electric utility industry that recognizes both the nature of enclosed spaces and the types of tasks we perform in those spaces. Wind is somewhat different in configuration, but it is still electric utility generation, transmission and distribution, so we still benefit from that.

Here is a summary of what you should know about enclosed spaces:

  • OSHA’s intent is that all confined spaces are hazardous until they are classified by a competent person and remediated to make the space safe to enter. Otherwise, they shall be treated as permit spaces.
  • OSHA also intends that a competent person must classify electrical manholes, vaults, tunnels or shafts as enclosed spaces in accordance with the standard before workers enter those spaces.
  • Classification of an enclosed space requires detection of flammable gases, toxic fumes and oxygen levels.
  • Where unacceptable atmospheres require ventilation, gas checks must assure the ventilation is effective prior to any entry.
  • Where electrical systems exist, a competent person must inspect and assure the integrity of the insulating systems.
  • A manhole or vault that’s only hazard is electrical shock requires an attendant who can occasionally enter the space to assist workers (see 1910.269(t)(3)(ii)).
  • An enclosed space has more potential hazards, not just electrical hazards, so an enclosed space attendant cannot enter the space (see 1910.269(e)(7)).
  • Enclosed space rescue where a hazardous atmosphere exists (e.g., smoke, fire, gas, toxic fumes) must be non-entry rescue. This requirement means enclosed space entrants must be equipped with rescue lines.
  • A manhole or vault that has come to contain any hazardous condition, such as smoke, gas or flood, is a permit space and non-entry rescue must be performed, meaning the entrants must be in a harness and lifeline where those potential hazards exist.
  • Entry rescue must be made by a qualified person in protective gear, and an attendant must be on the surface during the rescue entry.
  • Any space that has a hazardous atmosphere must be effectively ventilated or treated as a permit space.
  • Workers around any confined space of any classification must be trained to the requirements of the 1910.269 standard before they enter or serve as an attendant.

Some Final Notes on Wind
When it comes to wind, rescue for a basement or the bottom of a tower is not too difficult to figure out and plan for. The nacelle has proved to be more difficult, and we have had several bad outcomes in those spaces in the past decade. The nacelle gets surveyed for hazards by a competent person just like a manhole does. If hazardous conditions are discovered, remediation must occur. Leaking fluids is a big one, especially if they are flammable.

Egress from a nacelle is either down the ladder or out the top hatch. If the exit is the top hatch, timely rescue must be in the plan. The roof rescue is often a rappel, so that equipment must be in place while the work is going on. Rappelling should also be considered down the ladder. In a fire, it is much faster to rope down the ladder than to climb down it.

About the Author: After 25 years as a transmission-distribution lineman and foreman, Jim Vaughn, CUSP, has devoted the last 24 years to safety and training. A noted author, trainer and lecturer, he is a senior consultant for the Institute for Safety in Powerline Construction. He can be reached at jim@ispconline.com.

This entry is part 2 of 9 in the series June 2022

Electrifying Heavy-Duty Trucks with Hydrogen

Any fleet pursuing a goal of 100% electrification will need to plan to include hydrogen fuel-cell vehicles in their mix, specifically for their Class 8 truck segment.

That was the overarching theme of a Green Truck Summit panel session – “How Hydrogen and Fuel Cells Will Affect Work Trucks” – that I attended in March at NTEA Work Truck Week.

The panelists included Morgan Andreae, executive director of the Growth Office at Cummins Inc.; Craig Knight, CEO at Hyzon Motors; and George Rubin, chief commercial officer at Loop Energy.


Here are my seven takeaways from that session. If you’d like to learn more, I delve deeper into this topic with Hyzon’s Craig Knight in this article.

1. Hydrogen fuel-cell vehicles are EVs.

The difference is in the electric power source: hydrogen and fuel cells versus battery power only.

2. Hydrogen offers a much higher energy density than batteries.

More energy can be stored on the truck at a much lower weight than batteries, allowing for a longer range and larger payload.

3. The current commercial focus for hydrogen fuel cells is on higher-use, harsher duty-cycle fleet applications that involve carrying bigger loads.

Think long-haul trucks, refrigerated trucks, garbage trucks and dump trucks.

4. Hydrogen refueling times are a fraction of the battery charge rates for a comparable range.

Hydrogen takes about the same amount of time as refueling a diesel vehicle.

5. The big obstacle to fuel-cell growth is the lack of infrastructure.

The high cost of hydrogen fuel and fueling stations has constrained fuel-cell expansion, but the U.S. infrastructure bill addresses this challenge. Initiatives are also underway to produce hydrogen locally to serve the local market. This model should reduce costs by minimizing hydrogen fuel transport.

6. There’s still a lack of knowledge and education around hydrogen fuel-cell technology.

That’s why OEMs are targeting the fleet/work truck industry as early adopters to help build awareness for the broader market.

7. Hydrogen fuel-cell generators could be an answer for EV resiliency.

Fuel-cell generators could replace fossil-fuel-powered generators to charge battery-electric vehicles in the field – especially important during storm response situations – or supplement existing grid capacity to handle power surges.

This entry is part 7 of 9 in the series June 2022

Safety Signs and Sign Policy

You might be surprised how a little thing like a safety sign can turn out to be one of your company’s biggest financial losses of the year. Over the last decade, I’m aware of three clients who lost big because a sign they put up was the wrong color, the print was imprecise, or the employer didn’t have a sign policy or effective safety sign training.

Let’s start with having a sign policy. When helping to develop any policy, I always tell clients that the policy you write is only as good as the training you provide when you roll it out. For instance, if I were to research signs in preparation for a sign policy, I would likely start with the ANSI Z535 safety sign standard. That is where you find the results of the research and testing performed by industry on how to compose and employ effective safety signs. Having done all the research, you establish a procedure and policy that ensure signs are effective. Your new policy enhances worker safety and the safety of the public, and it protects the employer. There is only one very big problem: Your sign program will not be effective if the workforce that uses the signs, the facilitator who provides the signs, and the employees who install or maintain the signs don’t understand sign color, size, print and placement. This is especially true over time when the signs become worn, illegible or damaged, or if they need to be replaced or moved.

If you aren’t already convinced, you are probably now asking, why do employees need to know about safety signs? There are a number of reasons and all of them are lab tested. Agencies like OSHA and MSHA know through experience that safety signs prevent incidents when they are part of a system of safety. Placing signs is only part of the job. A good safety program consists of several elements that link together to establish a safety culture. Employees who are trained on the purpose and function of safety signs are more likely to see and adhere to them. Training employees on the value and construction of signs gives them some ownership and awareness that signs are important and are not only to be followed but are to be maintained in a functional condition. Training on safety signs is not an all-day enterprise. But that short training makes the safety signs a tool in facilities safety when employees understand why they work and what they mean. Signs that an employer places in the environment are there to protect the public from hazards associated with the employer’s facilities. These are the signs warning of lakes, ditches, driveways, alligators, hidden drives, speed limits, trucks entering/exiting, energized equipment, radio-frequency energy and slow-moving vehicles.

The ANSI sign standards are tested to determine the effects on observers of viewing the signage and warning symbols. Those effective sign constructs are then categorized and standardized to keep signs consistent. When workers and the public see a safety sign, they are conditioned to react to the color and graphics. By “conditioned,” I mean that consistency in color, graphics and shape is immediately recognized as a warning because signs are consistent. The Manual on Uniform Traffic Control Devices provides the same consistency, so much so that no one really reads a stop sign. The size, shape and color automatically result in the driver slowing to a stop. This cognitive act was made clear a few years ago when an artist thought stop signs were boring, so he replaced numerous standard stop signs with artistic versions using different colors and graphics. The result was a flood of traffic accidents and jail for the artist who foolishly signed his artwork.

The ANSI safety sign standard specifies that a sign must have three panels bordered within the sign. The three components of effective signage are the signal word panel, the message panel and the symbol panel. The signal word is one word, such as “DANGER,” “WARNING” or “CAUTION.” The message is short, concise and describes the hazard, such as “High Voltage” or “Poison” or “Wild Animals.” The symbol panel is a second method to repeat the message for those who may not fully comprehend it. The symbols are researched using numerous groups of people of varying ages, levels of education, nationalities and culture groups to learn their responses to viewing the symbols. These three panels and the colored backgrounds make up the effectiveness of the sign. The colors for “DANGER” are white letters on a red background. For “WARNING,” they’re black letters on an orange background. “CAUTION” uses black letters on a yellow background, while “NOTICE” uses italicized white letters on a blue background. “SAFETY INSTRUCTIONS” are white letters on a green background.

The placement of signs is elective based on avenues of approach to the hazard and angles of view. Signs should be placed within view of an approaching person so that they can see the sign and react in time to avoid the hazard. Inside a facility where employees are trained to recognize signs, placement is simplified. Out in the public environment, unlike with the MUTCD, the size, number and location of signs are not specified. The owner must make an evaluation and consider the nature of the passing public and the level of hazard to decide where and how many signs are appropriate, keeping in mind that approaching persons must be able to see and react to the sign’s message in time to avoid the hazard.

Real-Life Examples
In the introduction to this article, I mentioned the cost of poor environmental signage. Here are a couple of real instances where the true value of safety signs was overlooked.

Case 1
A utility built a substation. The fence around the substation was 7 feet high with three strands of barbed wire at the top. The fence was also a minimum of 18 feet from the nearest structure in the substation. Outside the substation, a hedge ran parallel along the substation’s rear fence. The hedge was about 10 feet high and 12 feet from the fence. When the fence was erected, the crew installed “HIGH VOLTAGE” red-and-white warning signs every 30 feet along the 240-foot-long fence. About four months later, a local man with a history of burglary and theft convictions laid a wooden ladder against the barbed wire and easily scaled the fence. A short time later, while cutting the 4/0 ground from the substation power transformer, he got in series with a ground current and was electrocuted. A substation maintenance crew member found his body. According to the coroner, he had been in the substation three days.

Within 72 hours, the utility received a notice of claim and a negligence injury lawsuit based on the standards of care established in Section 11 of the National Electrical Safety Code and the codes referenced therein (the American National Standard for Environmental and Facility Safety Signs, ANSI Z535.1, .2, .3, .4 and .5). The suit was successful and hinged on one brief paragraph found in ANSI safety sign standard 8.2.2, “Determination of Safe Viewing Distance,” which reads, “Determination of safe viewing distance for the message panel text shall take into consideration a reasonable hazard avoidance reaction time.” It was argued by the utility that the ANSI standard only applied to workers. The jury disagreed – and they were right. The plaintiff’s case clearly showed that the ladder the victim used was placed almost equidistant between the two closest signs. The plaintiff also demonstrated that when emerging from the hedge used to conceal his unlawful entry for a criminal purpose, the local man could not see the face of the signs. That single argument was enough to result in a multimillion-dollar award to the family of the deceased.

This raises the question for the utility: Would training on sign placement and purpose have triggered a change in company policy? If the sign installers had recognized the placement issue, would the signs have been placed at 8-foot intervals and would that have prevented the incident? No one can argue intent or assumptions on the part of the deceased in this event. What is clearly true is that sign placement did not meet the intent of the standard of care.

Case 2
A highway engineering and construction firm leased an empty 3-acre lot as a base of operations. Highway equipment and materials were stored there. Residential housing was across the street from the lot. A neighborhood market down the street next to the construction lot was across the street from a residential street entrance.

One morning, an improperly loaded material truck caught the system neutral of a single-phase line that crossed the construction lot entrance. The impact broke the #4 copper primary, which fell clear of the neutral, landing on the crushed granite cover in the construction lot. The road crews said the wire was smoking some at first but then stopped. They decided to put up a sign. They used a 4×8 sheet of 5/8 plywood against a sawhorse. In orange fluorescent marking paint, they sprayed this warning on the plywood: “Don’t Touch the Wire.” They proceeded to return to their work area some 100 yards away and then called the power company to report the downed wire.

Fewer than 15 minutes later, a pedestrian from the residential area crossed the street into the construction lot, walking toward the market. She stepped on the downed wire and was electrocuted just as the utility troubleman was pulling up to the location. One of the two-man crew cut the wire with hot cutters and rubber gloves while the second began CPR on the pedestrian. The first man drove to the fuse and pulled it. Despite their efforts, the victim did not survive.

The family of the deceased sued the engineering firm and won. The ANSI sign standard was the basis of their negligence claim. The plaintiff agreed that the workers sought to minimize risk to the public. The plaintiff’s claim also showed that the sign was noncompliant with the ANSI standard in size, shape, color and message and thus could not be recognized by the victim. It was purely an accident that the wire was brought down, but the crew recognized there was a remaining hazard. That is why they put up the sign. Their efforts were honorable but fell short of the standard of care established by the ANSI standard. The crew should have stood by to warn approaching members of the public of the hazard, but instead they chose to erect a warning. That made sense to them because they knew the nature of the hazard. The message made sense to them because they clearly knew of the presence of the wire. The color made sense to them because that is the color that they use to write warnings on the ground where underground obstructions are known to exist. But the pedestrian had no foreknowledge or experience that would have caused her to recognize the hazard expressed by the crew member’s sign.

The ANSI sign standard shows that colors, hazard symbols and warning messages have a repeatable and predictive effect, informing observers that a hazard is present. Of course, such a sign was not available in this case, and a compliant sign could not have been constructed by the highway workers. However, basic knowledge of the function and purpose of signs should have compelled the workers to know their plywood composition was not effective or compliant when such a life-threatening hazard was present. A trained worker would have immediately rejected the crew-made sign idea and posted observers to keep the area clear.

Conclusion
By the way, remember the old white “DANGER” sign in a red oval on a black background? When research showed the value of the three-panel design in 1991, the new design was presented. The ANSI standard explained the rejection of the old red oval but allowed its use to provide time for the conversion. In 1998, the oval sign was removed from the standard and no longer considered compliant. You can still buy them even though they were removed from the ANSI standard. However, again, installing red-oval “DANGER” signs is no longer considered compliant. The bottom line here is that if you are a safety person and/or a policy writer, you need to know these consensus standards and employ their guidance in your own safety programs – both to better protect your workers and to protect your employer.

About the Author: After 25 years as a transmission-distribution lineman and foreman, Jim Vaughn, CUSP, has devoted the last 24 years to safety and training. A noted author, trainer and lecturer, he is a senior consultant for the Institute for Safety in Powerline Construction. He can be reached at jim@ispconline.com.

This entry is part 1 of 9 in the series March 2022

Navigating Post-Pandemic Challenges

As we head into spring, the fleet industry is starting to get back to some sort of normalcy after what has felt like a two-year winter.

After skipping last year, the NTEA Work Truck Show is back in Indianapolis in March. And EUFMC returns to Williamsburg, Virginia, in June after a two-year hiatus.

But some pandemic effects appear likely to linger for the next several months and into next year.

For example, the supply chain crisis continues to cripple production for automakers, body manufacturers and upfitters. And that means you – and your business units – are having to wait much longer than usual for new parts and equipment to arrive.

Used vehicle prices are at historic highs, which is a great thing when you’re remarketing your equipment. But when it’s difficult to get comparable new equipment, you have to hold on to the older assets longer than you traditionally would, which increases maintenance costs.

And the inflationary pressures on steel, aluminum and other materials used in the work truck industry are driving up the costs of truck bodies and interiors.

So, how do you navigate the lingering post-pandemic challenges impacting your fleet operations?

Over the upcoming UFP issues this year, we’ll be speaking with your peers, industry experts and perhaps you – to glean insights, strategies and best practices for effective fleet management in a turbulent time like today.

After all, as a fleet professional in the utility industry, even in normal times, you’re under intense pressure to juggle multiple roles and do them all well. You’re expected to be the chief engineer, chief negotiator, financial analyst, organizational psychologist, risk management expert and public relations director for the department.

Yet there is only so much time in the day. When your attention is spread across various responsibilities, where do you find the time to gather the information you need to grow and excel in your work?

That’s what we at UFP seek to help you do – save you time as your go-to resource. And we’re always looking for new voices within our utility fleet professional community to share their stories, lessons learned and fresh ideas.

So, if you’re a fleet professional interested in speaking with us about what’s going on in your fleet, how your organization is handling the current post-COVID challenges, or new initiatives you’re implementing that you think could also help your peers, please reach out to me. I’d love to hear from you.

Sean M. Lyden
Editor

This entry is part 9 of 9 in the series March 2022
Utility Fleet Professional

360 Memorial Drive, Suite 10, Crystal Lake, IL 60014 | 815.459.1796

KNOWLEDGE, INSIGHT & STRATEGY FOR UTILITY FLEET LEADERS

Utility Fleet Professional is produced by Utility Business Media, Inc.   View Capabilities Statement

Get the Utility Fleet Professional Digital Edition App
Get the Utility Fleet Professional Digital Edition App

Get the iP Digital Edition App


© All rights reserved.
Back to Top